Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method
Phys. Rev. D 101, 043517 (2020)
Abstract:
We explore higher-dimensional generalizations of the Runge-Kutta-Wentzel-Kramers-Brillouin method for integrating coupled systems of first-order ordinary differential equations with highly oscillatory solutions. Such methods could improve the performance and adaptability of the codes which are used to compute numerical solutions to the Einstein-Boltzmann equations. We test Magnus expansion-based methods on the Einstein-Boltzmann equations for a simple universe model dominated by photons with a small amount of cold dark matter. The Magnus expansion methods achieve an increase in run speed of about 50% compared to a standard Runge-Kutta integration method. A comparison of approximate solutions derived from the Magnus expansion and the Wentzel-Kramers-Brillouin (WKB) method implies the two are distinct mathematical approaches. Simple Magnus expansion solutions show inferior long range accuracy compared to WKB. However we also demonstrate how one can improve on the standard Magnus approach to obtain a new "Jordan-Magnus" method. This has a WKB-like performance on simple two-dimensional systems, although its higher-dimensional generalization remains elusive.
The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters
(2020)
Abstract:
We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to z = 3.5. The simulation resolves haloes down to the atomic cooling limit, and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The Obelisk project is designed specifically to study the coevolution of high redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to high redshift protoclusters. We find that hydrogen reionization happens inside-out and is completed by z ∼ 6 in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at z ∼ 4.The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters
(2020)
Detecting the anisotropic astrophysical gravitational wave background in the presence of shot noise through cross-correlations
(2020)