Disconnected pseudo-Cℓ covariances for projected large-scale structure data

Journal of Cosmology and Astroparticle Physics IOP Publishing 2019:11 (2019) 043

Authors:

C García-García, D Alonso, Emilio Bellini

Abstract:

The disconnected part of the power spectrum covariance matrix (also known as the "Gaussian" covariance) is the dominant contribution on large scales for galaxy clustering and weak lensing datasets. The presence of a complicated sky mask causes non-trivial correlations between different Fourier/harmonic modes, which must be accurately characterized in order to obtain reliable cosmological constraints. This is particularly relevant for galaxy survey data. Unfortunately, an exact calculation of these correlations involves O(ℓmax6) operations that become computationally impractical very quickly. We present an implementation of approximate methods to estimate the Gaussian covariance matrix of power spectra involving spin-0 and spin-2 flat- and curved-sky fields, expanding on existing algorithms {developed in the context of CMB analyses}. These methods achieve an O(ℓmax3) scaling, which makes the computation of the covariance matrix as fast as the computation of the power spectrum itself. We quantify the accuracy of these methods on large-scale structure and weak lensing data, making use of a large number of Gaussian but otherwise realistic simulations. We show that, using the approximate covariance matrix, we are able to recover the true posterior distribution of cosmological parameters to high accuracy. We also quantify the shortcomings of these methods, which become unreliable on the very largest scales, as well as for covariance matrix elements involving cosmic shear B modes. The algorithms presented here are implemented in the public code NaMaster https://github.com/LSSTDESC/NaMaster.

The impact of the connectivity of the cosmic web on the physical properties of galaxies at its nodes

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:3 (2019) 4294-4309

Authors:

Katarina Kraljic, Christophe Pichon, Sandrine Codis, Clotilde Laigle, Romeel Davé, Yohan Dubois, Ho Seong Hwang, Dmitri Pogosyan, Stéphane Arnouts, Julien Devriendt, Marcello Musso, Sébastien Peirani, Adrianne Slyz, Marie Treyer

Abstract:

We investigate the impact of the number of filaments connected to the nodes of the cosmic web on the physical properties of their galaxies using the Sloan Digital Sky Survey. We compare these measurements to the cosmological hydrodynamical simulations Horizon-(no)AGN and Simba. We find that more massive galaxies are more connected, in qualitative agreement with theoretical predictions and measurements in dark matter only simulation. The star formation activity and morphology of observed galaxies both display some dependence on the connectivity of the cosmic web at fixed stellar mass: less star forming and less rotation supported galaxies also tend to have higher connectivity. These results qualitatively hold both for observed and virtual galaxies, and can be understood given that the cosmic web is the main source of fuel for galaxy growth. The simulations show the same trends at fixed halo mass, suggesting that the geometry of filamentary infall impacts galaxy properties beyond the depth of the local potential well. Based on simulations, it is also found that AGN feedback is key in reversing the relationship between stellar mass and connectivity at fixed halo mass. Technically, connectivity is a practical observational proxy for past and present accretion (minor mergers or diffuse infall).

Screened fifth forces mediated by dark matter-baryon interactions: Theory and astrophysical probes

Physical Review D American Physical Society (APS) 100:10 (2019) 104035

Authors:

Harry Desmond, Jeremy Sakstein, Bhuvnesh Jain

When galaxies align: intrinsic alignments of the progenitors of elliptical galaxies in the Horizon-AGN simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:January 2020 (2019) 4057-4068

Authors:

James Bate, Nora Elisa Chisari, Sandrine Codis, Garreth Martin, Yohan Dubois, Julien Devriendt, Christophe Pichon, Adrianne Slyz

Abstract:

Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of intrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive $z=0$ elliptical galaxies, the main weak lensing contaminant at low redshift. We show that this population, which at $z=0$ has a stellar mass above $10^{10.4}$ M$_\odot$, transitions from having no alignment with the tidal field at $z=3$, to a significant alignment by $z=1$. From $z=0.5$ they preserve their alignment at an approximately constant level until $z=0$. We find a mass-dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today ($10^{10.4}<M/{\rm M}_\odot<10^{10.7}$) do not become aligned till later redshifts ($z<2$), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition and tidal field smoothing.

α-attractor dark energy in view of next-generation cosmological surveys

Journal of Cosmology and Astroparticle Physics IOP Publishing 2019:07 (2019) 025-025

Authors:

Carlos García-García, Pilar Ruíz-Lapuente, David Alonso, M Zumalacárregui