The tight empirical relation between dark matter halo mass and flat rotation velocity for late-type galaxies
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 483:1 (2018) L98-L103
Abstract:
We present a new empirical relation between galaxy dark matter halo mass (Mhalo) and the velocity along the flat portion of the rotation curve (Vflat), derived from 120 late-type galaxies from the SPARC data base. The orthogonal scatter in this relation is comparable to the observed scatter in the baryonic Tully–Fisher relation (BTFR), indicating a tight coupling between total halo mass and galaxy kinematics at r ≪ Rvir. The small vertical scatter in the relation makes it an extremely competitive estimator of total halo mass. We demonstrate that this conclusion holds true for different priors on M*/L[3.6μ] that give a tight BTFR, but requires that the halo density profile follow DC14 rather than NFW. We provide additional relations between Mhalo and other velocity definitions at smaller galactic radii (i.e. V2.2, Veff, and Vmax) which can be useful for estimating halo masses from kinematic surveys, providing an alternative to abundance matching. Furthermore, we constrain the dark matter analogue of the radial acceleration relation and also find its scatter to be small, demonstrating the fine balance between baryons and dark matter in their contribution to galaxy kinematics.The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN
(2018)
Axion star collisions with black holes and neutron stars in full 3D numerical relativity
Physical Review D American Physical Society 98:8 (2018) 083020
Abstract:
Axions are a potential dark matter candidate, which may condense and form self-gravitating compact objects, called axion stars (ASs). In this work, we study for the first time head-on collisions of relativistic ASs with black holes (BHs) and neutron stars (NSs). In the case of BH-AS mergers we find that, in general, the largest scalar clouds are produced by mergers of low compactness ASs and spinning BHs. Although in most of the cases which we study the majority of the mass is absorbed by the BH within a short time after the merger, in favorable cases the remaining cloud surrounding the final BH remnant can be as large as 30% of the initial axion star mass, with a bosonic cloud mass of O ( 10 − 1 ) M BH and peak energy density comparable to that obtained in a superradiant buildup. This provides a dynamical mechanism for the formation of long lived scalar hair, which could lead to observable signals in cases where the axion interacts with baryonic matter around the BH, or where it forms the seed of a future superradiant buildup in highly spinning cases. Considering NS-AS collisions we find two possible final states: (i) a BH surrounded by a (small) scalar cloud, or (ii) a stable NS enveloped in an axion cloud of roughly the same mass as the initial AS. While for low mass ASs the NS is only mildly perturbed by the collision, a larger mass AS gives rise to a massive ejection of baryonic mass from the system, purely due to gravitational effects. Therefore, even in the absence of a direct axion coupling to baryonic matter, NS-AS collisions could give rise to electromagnetic observables in addition to their gravitational wave signatures.The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations
(2018)
Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields
(2018)