High angular momentum halo gas: a feedback and code-independent prediction of LCDM

Astrophysical Journal American Astronomical Society 843:1 (2017) 47

Authors:

Kyle R Stewart, Ariyeh H Maller, Jose Oñorbe, James S Bullock, M Ryan Joung, Julien Devriendt, Daniel Ceverino, Dusan Kereš, Phil F Hopkins, Claude-André Faucher-Giguère

Abstract:

We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy's halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas (λcold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

The new semianalytic code GalICS 2.0 - Reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously

(2017)

Authors:

A Cattaneo, J Blaizot, JEG Devriendt, GA Mamon, E Tollet, A Dekel, B Guiderdoni, M Kucukbas, ACR Thob

Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time

(2017)

Authors:

Christiane S Lorenz, Erminia Calabrese, David Alonso

On the galaxy–halo connection in the EAGLE simulation

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 471:1 (2017) L11-L15

Authors:

Harry Desmond, Y-Y Mao, RH Wechsler, RA Crain, J Schaye

Abstract:

Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass–size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy–halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.

Supermassive black holes in disk-dominated galaxies outgrow their bulges and co-evolve with their host galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:2 (2017) 1559-1569

Authors:

BD Simmons, RJ Smethurst, Christopher Lintott

Abstract:

The deep connection between galaxies and their supermassive black holes is central to modern astrophysics and cosmology. The observed correlation between galaxy and black hole mass is usually attributed to the contribution of major mergers to both. We make use of a sample of galaxies whose disk-dominated morphologies indicate a major-merger-free history and show that such systems are capable of growing supermassive black holes at rates similar to quasars. Comparing black hole masses to conservative upper limits on bulge masses, we show that the black holes in the sample are typically larger than expected if processes creating bulges are also the primary driver of black hole growth. The same relation between black hole and total stellar mass of the galaxy is found for the merger-free sample as for a sample which has experienced substantial mergers, indicating that major mergers do not play a significant role in controlling the coevolution of galaxies and black holes. We suggest that more fundamental processes which contribute to galaxy assembly are also responsible for black hole growth.