hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) ARTN 019
The Python Sky Model: software for simulating the Galactic microwave sky
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 469:3 (2017) 2821-2833
Large sSynoptic Survey Telescope Galaxies Science Roadmap
(2017)
Abstract:
The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.Prospects for measuring cosmic microwave background spectral distortions in the presence of foregrounds
Monthly Notices of the Royal Astronomical Society 471:1 (2017) 1126-1140
Abstract:
© 2018 The Author(s). Measurements of cosmic microwave background (CMB) spectral distortions have profound implications for our understanding of physical processes taking place over a vast window in cosmological history. Foreground contamination is unavoidable in such measurements and detailed signal-foreground separation will be necessary to extract cosmological science. In this paper, we present Markov chain Monte Carlo based spectral distortion detection forecasts in the presence of Galactic and extragalactic foregrounds for a range of possible experimental configurations, focusing on the Primordial Inflation Explorer (PIXIE) as a fiducial concept. We consider modifications to the baseline PIXIE mission (operating ≃ 12 months in distortion mode), searching for optimal configurations using a Fisher approach. Using only spectral information, we forecast an extended PIXIE mission to detect the expected average nonrelativistic and relativistic thermal Sunyaev-Zeldovich distortions at high significance (194s and 11s, respectively), even in the presence of foregrounds. The ΛCDM Silk damping μ- type distortion is not detected without additional modifications of the instrument or external data. Galactic synchrotron radiation is the most problematic source of contamination in this respect, an issue that could be mitigated by combining PIXIE data with future ground-based observations at low frequencies (v ≲ 15-30 GHz). Assuming moderate external information on the synchrotron spectrum, we project an upper limit of |μ| < 3.6 × 10-7 (95 per cent c.l.), slightly more than one order of magnitude above the fiducial ΛCDM signal from the damping of small-scale primordial fluctuations, but a factor of ≃250 improvement over the current upper limit from COBE/Far Infrared Absolute Spectrophotometer. This limit could be further reduced to |μ| < 9.4 × 10-8 (95 per cent c.l.) with more optimistic assumptions about extra low-frequency information and would rule out many alternative inflation models and provide new constraints on decaying particle scenarios.Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation: the impact of AGN feedback
Monthly Notices of the Royal Astronomical Society Oxford University Press 472:2 (2017) 2153-2169