The XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme
(2015)
RCSLenS: Cosmic Distances from Weak Lensing
ArXiv 1512.03627 (2015)
Abstract:
In this paper we present results of applying the shear-ratio method to the RCSLenS data. The method takes the ratio of the mean of the weak lensing tangential shear signal about galaxy clusters, averaged over all clusters of the same redshift, in multiple background redshift bins. In taking a ratio the mass-dependency of the shear signal is cancelled-out leaving a statistic that is dependent on the geometric part of the lensing kernel only. We apply this method to 535 clusters and measure a cosmology-independent distance-redshift relation to redshifts z~1. In combination with Planck data the method lifts the degeneracies in the CMB measurements, resulting in cosmological parameter constraints of OmegaM=0.31 +/- 0.10 and w0 = -1.02 +/- 0.37, for a flat wCDM cosmology.Recovering the Tidal Field in the Projected Galaxy Distribution
(2015)
GRChombo: Numerical relativity with adaptive mesh refinement
Classical and Quantum Gravity IOP Publishing 32:24 (2015) 245011
Abstract:
In this work, we introduce ${\mathtt{GRChombo}}:$ a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger–Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. ${\mathtt{GRChombo}}$ evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that ${\mathtt{GRChombo}}$ can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 454:2 (2015) 1958-1975