KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

Monthly Notices of the Royal Astronomical Society Oxford University Press 465:2 (2016) 1454-1498

Authors:

Hendrik Hildebrandt, Massimo Viola, Catherine Heymans, Shahab Joudaki, Koen Kuijken, Chris Blake, Thomas Erben, Benjamin Joachimi, Dominik Klaes, Lance Miller, Chris B Morrison, Reiko Nakajima, Gijs Verdoes Kleijn, Alexandra Amon, Ami Choi, Giovanni Covone, Jelte TA de Jong, Andrej Dvornik, Ian F Conti, Aniello Grado, Joachim Harnois-Déraps, Ricardo Herbonnet, Henk Hoekstra, Fabian Köhlinger, John McFarland, Alexander Mead, Julian Merten, Nicola Napolitano, John A Peacock, Mario Radovich, Peter Schneider, Paul Simon, Edwin A Valentijn, JL van den Busch, Edo van Uitert, Ludovic van Waerbeke

Abstract:

We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find S8≡σ8Ωm/0.3−−−−−−√=0.745±0.039⁠. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lensFIT validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl.

The Faber–Jackson relation and Fundamental Plane from halo abundance matching

Monthly Notices of the Royal Astronomical Society Oxford University Press 465:1 (2016) 820-833

Authors:

Harry Desmond, RH Wechsler

Abstract:

The Fundamental Plane (FP) describes the relation between the stellar mass, size, and velocity dispersion of elliptical galaxies; the Faber–Jackson relation (FJR) is its projection on to {mass, velocity} space. In this work, we re-deploy and expand the framework of Desmond & Wechsler to ask whether abundance matching-based Λ-cold dark matter models which have shown success in matching the spatial distribution of galaxies are also capable of explaining key properties of the FJR and FP, including their scatter. Within our framework, agreement with the normalization of the FJR requires haloes to expand in response to disc formation.We find that the tilt of the FP may be explained by a combination of the observed non-homology in galaxy structure and the variation in mass-to-light ratio produced by abundance matching with a universal initial mass function, provided that the anisotropy of stellar motions is taken into account. However, the predicted scatter around the FP is considerably increased by situating galaxies in cosmologically motivated haloes due to the variations in halo properties at fixed stellar mass and appears to exceed that of the data. This implies that additional correlations between galaxy and halo variables may be required to fully reconcile these models with elliptical galaxy scaling relations.

The Observational Future of Cosmological Scalar-Tensor Theories

(2016)

Authors:

David Alonso, Emilio Bellini, Pedro G Ferreira, Miguel Zumalacarregui

Weyl Current, Scale-Invariant Inflation and Planck Scale Generation

(2016)

Authors:

Pedro G Ferreira, Christopher T Hill, Graham G Ross

DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

ASTROPHYSICAL JOURNAL 830:2 (2016) ARTN 84

Authors:

MJ Kuchner, SM Silverberg, AS Bans, S Bhattacharjee, SJ Kenyon, JH Debes, T Currie, L Garcia, D Jung, C Lintott, M McElwain, DL Padgett, LM Rebull, JP Wisniewski, E Nesvold, K Schawinski, ML Thaller, CA Grady, J Biggs, M Bosch, T Cernohous, HAD Luca, M Hyogo, LLW Wah, A Piipuu, F Pineiro, DD Collaboration