A correlation between the spectral and timing properties of AGN

Astronomy and Astrophysics 494:3 (2009) 905-912

Authors:

IE Papadakis, M Sobolewska, P Arevalo, A Markowitz, IM McHardy, L Miller, JN Reeves, TJ Turner

Abstract:

Context. We present the results from a combined study of the average X-ray spectral and timing properties of 14 nearby AGN. Aims. We investigate whether a "spectral-timing" AGN correlation exists, similar to the one observed in Cyg X-1, compare the two correlations, and constrain possible physical mechanisms responsible for the X-ray emission in compact, accreting objects. Methods. For 11 of the sources in the sample, we used all the available data from the RXTE archive, which were taken until the end of 2006. There are 7795 RXTE observations in total for these AGN, obtained over a period of ∼7-11 years. We extracted their 3-20 keV spectra and fitted them with a simple power-law model, modified by the presence of a Gaussian line (at 6.4 keV) and cold absorption, when necessary. We used the best-fit slopes to construct their sample distribution function, and we used the median of the distribution, and the mean of the best-fit slopes, which are above the 80th percentile of the distributions, to estimate the mean spectral slope of the objects. The latter estimate is more appropriate in the case when the energy spectra of the sources are significantly affected by absorption and/or reflection effects. We also used results from the literature to estimate the average spectral slope of the three remaining objects. Results. The AGN average spectral slopes are not correlated either with the black hole mass or the characteristic frequencies that were detected in the power spectra. They are positively correlated, though, with the characteristic frequency when normalised to the sources black hole mass. This correlation is similar to the spectral-timing correlation that has been observed in Cyg X-1, but not the same. Conclusions. The AGN spectral-timing correlation can be explained if we assume that the accretion rate determines both the average spectral slope and the characteristic time scales in these systems. The spectrum should steepen and the characteristic frequency should increase, proportionally, with increasing accretion rate. We also provide a quantitative expression between spectral slope and accretion rate. Thermal Comptonisation models are broadly consistent with our result, and can also explain the difference between the spectral-timing correlations in Cyg X-1 and AGN, but only if the ratio of the soft photons' luminosity to the power injected to the hot corona is proportionally related to the accretion rate. © ESO 2009.

90 years on - The 1919 eclipse expedition at Príncipe

Astronomy and Geophysics 50:4 (2009) 4.12-4.15

Authors:

R Ellis, PG Ferreira, R Massey, G Weszkalnys

A compton-thick wind in the high-luminosity quasar, PDS 456

Astrophysical Journal 701:1 (2009) 493-507

Authors:

JN Reeves, PT O'Brien, V Braito, E Behar, L Miller, TJ Turner, AC Fabian, S Kaspi, R Mushotzky, M Ward

Abstract:

PDS 456 is a nearby (z = 0.184), luminous (L bol ∼ 10 47 erg s-1) type I quasar. A deep 190 ks Suzaku observation in 2007 February revealed the complex, broadband X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest frame. We show that the most plausible origin of the absorption is from blueshifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities ( ∼ 0.25c). A possible hard X-ray excess is detected above 15 keV with the Hard X-ray Detector (at 99.8% confidence), which may arise from high column density gas (N H > 1024 cm -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4π steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback. © 2009. The American Astronomical Society. All rights reserved.

Galaxy Zoo: Disentangling the environmental dependence of morphology and colour

Monthly Notices of the Royal Astronomical Society 399:2 (2009) 966-982

Authors:

RA Skibba, SP Bamford, RC Nichol, CJ Lintott, D Andreescu, EM Edmondson, P Murray, MJ Raddick, K Schawinski, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

We analyse the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology and luminosity. An implication of this is that much of the morphology-density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move on to the red sequence of the colour-magnitude diagram without quickly becoming an early type. We analyse the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths. © 2009 RAS.

Galaxy Zoo: Hanny's Voorwerp, a quasar light echo?

Monthly Notices of the Royal Astronomical Society 399:1 (2009) 129-140

Authors:

CJ Lintott, K Schawinski, W Keel, H Van Arkel, N Bennert, E Edmondson, D Thomas, DJB Smith, PD Herbert, MJ Jarvis, S Virani, D Andreescu, SP Bamford, K Land, P Murray, RC Nichol, MJ Raddick, AZ Slosar, A Szalay, J Vandenberg

Abstract:

We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny's Voorwerp, is bright in the SDSS g band due to unusually strong [O iii]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-line properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy's own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10 5 yr. This object may thus represent the first direct probe of quasar history on these time-scales. © 2009 RAS.