Measuring the conceptual understandings of citizen scientists participating in zooniverse projects: A first approach
Astronomy Education Review 12:1 (2013)
Abstract:
The Zooniverse projects turn everyday people into "citizen scientists" who work online with real data to assist scientists in conducting research on a variety of topics related to galaxies, exoplanets, lunar craters, and solar flares, among others. This paper describes our initial study to assess the conceptual knowledge and reasoning abilities of citizen scientists participating in two Zooniverse projects: Galaxy Zoo and Moon Zoo. In order to measure their knowledge and abilities, we developed two new assessment instruments, the Zooniverse Astronomical Concept Survey (ZACS) and the Lunar Cratering Concept Inventory (LCCI). We found that citizen scientists with the highest level of participation in the Galaxy Zoo and Moon Zoo projects also have the highest average correct scores on the items of the ZACS and LCCI. However, the limited nature of the data provided by Zooniverse participants prevents us from being able to evaluate the statistical significance of this finding, and we make no claim about whether there is a causal relationship between one's participation in Galaxy Zoo or Moon Zoo and one's level of conceptual understanding or reasoning ability on the astrophysical topics assessed by the ZACS or the LCCI. Overall, both the ZACS and the LCCI provide Zooniverse's citizen scientists with items that offer a wide range of difficulties. Using the data from the small subset of participants who responded to all items of the ZACS, we found evidence suggesting the ZACS is a reliable instrument (α=0.78), although twenty-one of its forty items appear to have point biserials less than 0.3. The work reported here provides significant insight into the strengths and limitations of various methods for administering assessments to citizen scientists. Researchers who wish to study the knowledge and abilities of citizen scientists in the future should be sure to design their research methods to avoid the pitfalls identified by our initial findings. © 2013 The American Astronomical Society.Planet Hunters. VI: An Independent Characterization of KOI-351 and Several Long Period Planet Candidates from the Kepler Archival Data
ArXiv 1310.5912 (2013)
Abstract:
We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting $\lesssim 1$ AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124-904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.Swirling around filaments: are large-scale structure vortices spinning up dark halos?
ArXiv 1310.3801 (2013)
Abstract:
The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60 degrees relative to random orientations. The cross sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of halos embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. On large scales, adiabatic/cooling hydrodynamical simulations display the same vorticity in the gas as in the dark matter. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller halos induced by this large-scale coherence, as argued in Codis et al. (2012). In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass halos form) dominates the angular momentum budget of these halos. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.Swirling around filaments: are large-scale structure vortices spinning up dark halos?
(2013)
Relativistic scalar fields and the quasi-static approximation in theories of modified gravity
(2013)