Boosting galactic outflows with enhanced resolution
Monthly Notices of the Royal Astronomical Society Oxford University Press 528:3 (2024) 5412-5431
Abstract:
We study how better resolving the cooling length of galactic outflows affect their energetics. We perform radiativehydrodynamical galaxy formation simulations of an isolated dwarf galaxy (M = 108 M) with the RAMSES-RTZ code, accounting for non-equilibrium cooling and chemistry coupled to radiative transfer. Our simulations reach a spatial resolution of 18 pc in the interstellar medium (ISM) using a traditional quasi-Lagrangian scheme. We further implement a new adaptive mesh refinement strategy to resolve the local gas cooling length, allowing us to gradually increase the resolution in the stellar-feedback-powered outflows, from ≥ 200 pc to 18 pc. The propagation of outflows into the inner circumgalactic medium is significantly modified by this additional resolution, but the ISM, star formation, and feedback remain by and large the same. With increasing resolution in the diffuse gas, the hot outflowing phase (T > 8 × 104 K) systematically reaches overall higher temperatures and stays hotter for longer as it propagates outwards. This leads to two-fold increases in the time-averaged mass and metal outflow loading factors away from the galaxy (r = 5 kpc), a five-fold increase in the average energy loading factor, and a ≈50 per cent increase in the number of sightlines with NO VI ≥ 1013 cm−2. Such a significant boost to the energetics of outflows without new feedback mechanisms or channels strongly motivates future studies quantifying the efficiency with which better-resolved multiphase outflows regulate galactic star formation in a cosmological context.LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
ArXiv 2402.05137 (2024)
Can we constrain structure growth from galaxy proper motions?
Open Journal of Astrophysics Maynooth Academic Publishing 7 (2024)
Abstract:
Galaxy peculiar velocities can be used to trace the growth of structure on cosmological scales. In the radial direction, peculiar velocities cause redshift space distortions, an established cosmological probe, and can be measured individually in the presence of an independent distance indicator. In the transverse direction, peculiar velocities cause proper motions. In this case, however, the proper motions are too small to detect on a galaxy-by-galaxy basis for any realistic experiment in the foreseeable future, but could be detected statistically in cross-correlation with other tracers of the density fluctuations. We forecast the sensitivity for a detection of transverse peculiar velocities through the cross-correlation of a proper motion survey, modelled after existing extragalactic samples measured by Gaia, and an overlaping galaxy survey. In particular, we consider a low-redshift galaxy sample, and a higher-redshift quasar sample. We find that, while the expected cosmological signal is below the expected statistical uncertainties from current data using cross-correlations, the sensitivity can improve fast with future experiments, and the threshold for detection may not be too far away in the future. Quantitatively, we find that the signal-to-noise ratio for detection is in the range , with most of the signal concentrated at low redshifts . If detected, this signal is sensitive to the product of the expansion and growth rates at late times, and thus would constitute an independent observable, sensitive to both background expansion and large-scale density fluctuations.LimberJack.jl: auto-differentiable methods for angular power spectra analyses
The Open Journal of Astrophysics Maynooth Academic Publishing 7 (2024)
Abstract:
We present LimberJack.jl, a fully auto-differentiable code for cosmological analyses of 2 point auto- and cross-correlation measurements from galaxy clustering, CMB lensing and weak lensing data written in Julia. Using Julia’s auto-differentiation ecosystem, LimberJack.jl can obtain gradients for its outputs an order of magnitude faster than traditional finite difference methods. This makes LimberJack.jl greatly synergistic with gradient-based sampling methods, such as Hamiltonian Monte Carlo, capable of efficiently exploring parameter spaces with hundreds of dimensions. We first prove LimberJack.jl’s reliability by reanalysing the DES Y1 3×2-point data. We then showcase its capabilities by using a O(100) parameters Gaussian Process to reconstruct the cosmic growth from a combination of DES Y1 galaxy clustering and weak lensing data, eBOSS QSO’s, CMB lensing and redshift-space distortions. Our Gaussian process reconstruction of the growth factor is statistically consistent with the ΛCDM Planck 2018 prediction at all redshifts. Moreover, we show that the addition of RSD data is extremely beneficial to this type of analysis, reducing the uncertainty in the reconstructed growth factor by 20% on average across redshift. LimberJack.jl is a fully open-source project available on Julia’s general repository of packages and GitHub.Emergence and cosmic evolution of the Kennicutt–Schmidt relation driven by interstellar turbulence
Astronomy and Astrophysics EDP Sciences 682 (2024) A50