Cosmic magnification as a probe of cosmology
Proceedings of the 47th Rencontres de Moriond on Cosmology 2012 (2012) 173-176
Abstract:
With the wealth of upcoming data from wide-field surveys such as KiDS, Pan-STARRS, DES and Euclid, it is more important than ever to understand the full range of independent probes of cosmology at our disposal. With this in mind, we motivate the use of cosmic magnification as a probe of cosmology, presenting forecasts for the improvements to cosmic shear cosmological parameter constraints when cosmic magnification is included for a KiDS-like survey. We find that when uncertainty in the galaxy bias is factored into the forecasts, cosmic magnification is less powerful that previously reported, but as it is less likely to be prone to measurement error we conclude it is a useful tool for cosmological analyses.Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift
Monthly Notices of the Royal Astronomical Society 423:4 (2012) 3616-3630
Abstract:
We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive haloes falls nearly radially to their very centre on extremely short time-scales. This process results in the formation of very compact bulges with specific angular momentum a factor of 5-30 smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates from both segregation and effective cancellation when the gas flows to the centre of the halo along well-defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer haloes which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low angular momentum gas to the centre of very massive haloes at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around 109M⊙ at an epoch when the Universe is barely 1 Gyr old. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Galaxy Zoo: Dust and molecular gas in early-type galaxies with prominent dust lanes
Monthly Notices of the Royal Astronomical Society 423:1 (2012) 49-58
Abstract:
We explore the properties of dust and associated molecular gas in 352 nearby (0.01 < z < 0.07) early-type galaxies (ETGs) with prominent dust lanes, drawn from the Sloan Digital Sky Survey (SDSS). Two-thirds of these 'dusty ETGs' (D-ETGs) are morphologically disturbed, which suggests a merger origin, making these galaxies ideal test beds for studying the merger process at low redshift. The D-ETGs preferentially reside in lower density environments, compared to a control sample drawn from the general ETG population. Around 80per cent of D-ETGs inhabit the field (compared to 60per cent of the control ETGs) and less than 2per cent inhabit clusters (compared to 10per cent of the control ETGs). Compared to their control-sample counterparts, D-ETGs exhibit bluer ultraviolet-optical colours (indicating enhanced levels of star formation) and an active galactic nucleus fraction that is more than an order of magnitude greater (indicating a strikingly higher incidence of nuclear activity). The mass of clumpy dust residing in large-scale dust features is estimated, using the SDSS r-band images, to be in the range 104.5-106.5M⊙. A comparison to the total (clumpy + diffuse) dust masses - calculated using the far-infrared fluxes of 15per cent of the D-ETGs that are detected by the Infrared Astronomical Satellite (IRAS) - indicates that only 20per cent of the dust is typically contained in these large-scale dust features. The dust masses are several times larger than the maximum value expected from stellar mass loss, ruling out an internal origin. The dust content shows no correlation with the blue luminosity, indicating that it is not related to a galactic scale cooling flow. Furthermore, no correlation is found with the age of the recent starburst, suggesting that the dust is accreted directly in the merger rather than being produced in situ by the triggered star formation. Using molecular gas-to-dust ratios of ETGs in the literature, we estimate that the median current molecular gas fraction in the IRAS-detected ETGs is ∼1.3per cent. Adopting reasonable values for gas depletion time-scales and starburst ages, the median initial gas fraction in these D-ETGs is ∼4per cent. Recent work has suggested that the merger © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Galaxy Zoo: Dust lane early-type galaxies are tracers of recent, gas-rich minor mergers
Monthly Notices of the Royal Astronomical Society 423:1 (2012) 59-67
Abstract:
We present the second of two papers concerning the origin and evolution of local early-type galaxies exhibiting dust features. We use optical and radio data to examine the nature of active galactic nucleus (AGN) activity in these objects, and compare these with a carefully constructed control sample. We find that dust lane early-type galaxies are much more likely to host emission-line AGN than the control sample galaxies. Moreover, there is a strong correlation between radio and emission-line AGN activity in dust lane early types, but not the control sample. Dust lane early-type galaxies show the same distribution of AGN properties in rich and poor environments, suggesting a similar triggering mechanism. By contrast, this is not the case for early types with no dust features. These findings strongly suggest that dust lane early-type galaxies are starburst systems formed in gas-rich mergers. Further evidence in support of this scenario is provided by enhanced star formation and black hole accretion rates in these objects. Dust lane early types therefore represent an evolutionary stage between starbursting and quiescent galaxies. In these objects, the AGN has already been triggered but has not as yet completely destroyed the gas reservoir required for star formation. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Galaxy Zoo: The environmental dependence of bars and bulges in disc galaxies
Monthly Notices of the Royal Astronomical Society 423:2 (2012) 1485-1502