Erratum: Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content [Phys. Rev. D 80, 103503 (2009)]

Physical Review D American Physical Society (APS) 84:10 (2011) 109902

Authors:

Timothy Clifton, Pedro G Ferreira

Power Spectrum Estimation from Peculiar Velocity Catalogues

(2011)

Authors:

Edward Macaulay, Hume A Feldman, Pedro G Ferreira, Andrew H Jaffe, Shankar Agarwal, Michael J Hudson, Richard Watkins

Power Spectrum Estimation from Peculiar Velocity Catalogues

ArXiv 1111.3338 (2011)

Authors:

Edward Macaulay, Hume A Feldman, Pedro G Ferreira, Andrew H Jaffe, Shankar Agarwal, Michael J Hudson, Richard Watkins

Abstract:

The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.

FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475

The Astrophysical Journal American Astronomical Society 741:2 (2011) 111

Authors:

C Bischoff, A Brizius, I Buder, Y Chinone, K Cleary, RN Dumoulin, A Kusaka, R Monsalve, SK Næss, LB Newburgh, R Reeves, KM Smith, IK Wehus, JA Zuntz, JTL Zwart, L Bronfman, R Bustos, SE Church, C Dickinson, HK Eriksen, PG Ferreira, T Gaier, JO Gundersen, M Hasegawa, M Hazumi, KM Huffenberger, ME Jones, P Kangaslahti, DJ Kapner, CR Lawrence, M Limon, J May, JJ McMahon, AD Miller, H Nguyen, GW Nixon, TJ Pearson, L Piccirillo, SJE Radford, ACS Readhead, JL Richards, D Samtleben, M Seiffert, MC Shepherd, ST Staggs, O Tajima, KL Thompson, K Vanderlinde, R Williamson, B Winstein

Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies

ArXiv 1111.1785 (2011)

Authors:

O Ivy Wong, K Schawinski, S Kaviraj, KL Masters, RC Nichol, C Lintott, WC Keel, D Darg, SP Bamford, D Andreescu, P Murray, MJ Raddick, A Szalay, D Thomas, J VandenBerg

Abstract:

We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS) and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late- type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the "green valley" below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively-evolving bulge-dominated galaxies. Our analysis suggests that it is likely that a local PSG will quickly transform into "red", low-mass early-type galaxies as the stellar morphologies of the "green" PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively-evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the "red sequence" once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of "downsizing" where the build-up of smaller galaxies occurs at later epochs.