Errors in Estimating Omega_Lambda due to the Fluid Approximation

ArXiv 0908.4488 (2009)

Authors:

Timothy Clifton, Pedro G Ferreira

Abstract:

The matter content of the Universe is strongly inhomogeneous on small scales. Motivated by this fact, we consider a model of the Universe that has regularly spaced discrete masses, rather than a continuous fluid. The optical properties of such space-times can differ considerably from the continuous fluid case, even if the 'average' dynamics are the same. We show that these differences have consequences for cosmological parameter estimation, and that fitting to recent supernovae observations gives a correction to the inferred value of Omega_Lambda of ~10%.

Archipelagian Cosmology: Dynamics and Observables in a Universe with Discretized Matter Content

(2009)

Authors:

Timothy Clifton, Pedro G Ferreira

Archipelagian Cosmology: Dynamics and Observables in a Universe with Discretized Matter Content

ArXiv 0907.4109 (2009)

Authors:

Timothy Clifton, Pedro G Ferreira

Abstract:

We consider a model of the Universe in which the matter content is in the form of discrete islands, rather than a continuous fluid. In the appropriate limits the resulting large-scale dynamics approach those of a Friedmann-Robertson-Walker (FRW) universe. The optical properties of such a space-time, however, do not. This illustrates the fact that the optical and `average' dynamical properties of a relativistic universe are not equivalent, and do not specify each other uniquely. We find the angular diameter distance, luminosity distance and redshifts that would be measured by observers in these space-times, using both analytic approximations and numerical simulations. While different from their counterparts in FRW, the effects found do not look like promising candidates to explain the observations usually attributed to the existence of Dark Energy. This incongruity with standard FRW cosmology is not due to the existence of any unexpectedly large structures or voids in the Universe, but only to the fact that the matter content of the Universe is not a continuous fluid.

Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies

ArXiv 0907.4155 (2009)

Authors:

Carolin N Cardamone, Kevin Schawinski, Marc Sarzi, Steven P Bamford, Nicola Bennert, CM Urry, Chris Lintott, William C Keel, John Parejko, Robert C Nichol, Daniel Thomas, Dan Andreescu, Phil Murray, M Jordan Raddick, Anze Slosar, Alex Szalay, Jan VandenBerg

Abstract:

We investigate a class of rapidly growing emission line galaxies, known as "Green Peas", first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] 5007 A, with an unusually large equivalent width of up to ~1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M~10^8.5 - 10^10 M_sun) with high star formation rates (~10 M_sun/yr), low metallicities (log[O/H] + 12 ~ 8.7) and low reddening (E(B-V) < 0.25) and they reside in low density environments. They have some of the highest specific star formation rates (up to ~10^{-8} yr^{-1}) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lyman-break galaxies and Lyman-alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.

Weak lensing and dark energy: The impact of dark energy on nonlinear dark matter clustering

Physical Review D American Physical Society (APS) 80:2 (2009) 023003

Authors:

Shahab Joudaki, Asantha Cooray, Daniel E Holz