Evaluating Protein Motif Significance Measures: A Case Study on Prosite Patterns
Institute of Electrical and Electronics Engineers (IEEE) (2007) 171-178
The energy-dependent X-ray timing characteristics of the narrow-line seyfert 1 Mrk 766
Astrophysical Journal 656:1 I (2007) 116-128
Abstract:
We present the energy-dependent power spectral density (PSD) and cross spectral properties of Mrk 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting that the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies that increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at (4.6 ± 0.4) × 10-4 Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly propagating viscosity variations in the accretion disk. © 2007. The American Astronomical Society. All rights reserved.The variable X-ray spectrum of Markarian 766 I. Principal components analysis
Astronomy and Astrophysics 463:1 (2007) 131-143
Abstract:
Aims. We analyse a long XMM-Newton observation of the narrow-line Seyfert 1 galaxy Mrk 766, using the marked spectral variability on timescales >20 ks to separate components in the X-ray spectrum. Methods. Principal components analysis is used to identify distinct emission components in the X-ray spectrum, possible alternative physical models for those components are then compared statistically. Results. The source spectral variability is well-explained by additive variations, with smaller extra contributions most likely arising from variable absorption. The principal varying component, eigenvector one, is found to have a steep (photon index 2.4) power-law shape, affected by a low column of ionised absorption that leads to the appearance of a soft excess. Eigenvector one varies by a factor 10 in amplitude on time-scales of days and appears to have broad ionised Fe Kα emission associated with it: the width of the ionised line is consistent with an origin at ∼100 gravitational radii. There is also a strong component of near-constant emission that dominates in the low state, whose spectrum is extremely hard above 1 keV, with a soft excess at lower energies, and with a strong edge at Fe K but remarkably little Fe Kα emission. Although this component may be explained as relativistically-blurred reflection from the inner accretion disc, we suggest that its spectrum and lack of variability may alternatively be explained as either (i) ionised reflection from an extended region, possibly a disc wind, or (ii) a signature of absorption by a disc wind with a variable covering fraction. Absorption features in the low state may indicate the presence of an outflow. © ESO 2007.Bayesian galaxy shape measurement for weak lensing surveys - I. Methodology and a fast-fitting algorithm
Monthly Notices of the Royal Astronomical Society 382:1 (2007) 315-324
Abstract:
The principles of measuring the shapes of galaxies by a model-fitting approach are discussed in the context of shape measurement for surveys of weak gravitational lensing. It is argued that such an approach should be optimal, allowing measurement with maximal signal-to-noise ratio, coupled with estimation of measurement errors. The distinction between likelihood-based and Bayesian methods is discussed. Systematic biases in the Bayesian method may be evaluated as part of the fitting process, and overall such an approach should yield unbiased shear estimation without requiring external calibration from simulations. The principal disadvantage of model fitting for large surveys is the computational time required, but here an algorithm is presented that enables large surveys to be analysed in feasible computation times. The method and algorithm is tested on simulated galaxies from the Shear TEsting Programme (STEP). © 2007 The Authors.WFSPEC - A Multi-Object AO Instrument for the European Extremely Large Telescope
Optics InfoBase Conference Papers (2007)