The 2dF QSO redshift survey-XV. Correlation analysis of redshift-space distortions

Monthly Notices of the Royal Astronomical Society 360:3 (2005) 1040-1054

Authors:

J Da Ângela, PJ Outram, T Shanks, BJ Boyle, SM Croom, NS Loaring, L Miller, RJ Smith

Abstract:

We analyse the redshift-space (z-space) distortions of quasi-stellar object (QSO) clustering in the 2-degree field instrument (2dF) QSO Redshift Survey (2QZ). To interpret the z-space correlation function, ξ(σ, π), we require an accurate model for the QSO real-space correlation function, ξ(r). Although a single power-law ξ(r) ξ r-γ model fits the projected correlation function [wp(σ)] at small scales, it implies somewhat too shallow a slope for both wp(σ) and the z-space correlation function, ξ(s), at larger scales (≳20 h-1 Mpc). Motivated by the form for ξ(r) seen in the 2dF Galaxy Redshift Survey (2dFGRS) and in standard A cold dark matter (COM) predictions, we use a double power-law model for ξ(r), which gives a good fit to ξ(s) and w p(σ). The model is parametrized by a slope of γ = 1.45 for 1 < r < 10 h-1 Mpc and γ = 2.30 for 10 < r < 40 h-1 Mpc. As found for the 2dFGRS, the value of β determined from the ratio of ξ(s)/ξ(r) depends sensitively on the form of ξ(r) assumed. With our double power-law form for ξ(r), we measure β(z = 1.4) = 0.32-0.11+0.09. Assuming the same model for ξ(r), we then analyse the z-space distortions in the 2QZ ξ(σ, π) and put constraints on the values of Ωm0 and β(z = 1.4), using an improved version of the method of Hoyle et al. The constraints we derive are Ωm0 = 0.35-0.13+0.19, β(z = 1.4) = 0.50-0.15+0.13 in agreement with our ξ(s)/ξ(r) results at the ∼1σ level. © 2005 RAS.

Non-linear evolution of suppressed dark matter primordial power spectra

Monthly Notices of the Royal Astronomical Society 360:1 (2005) 282-287

Authors:

C Boehm, H Mathis, J Devriendt, J Silk

Abstract:

We address the degree and rapidity of generation of small-scale power over the course of structure formation in cosmologies where the primordial power spectrum is strongly suppressed beyond a given wavenumber. We first summarize the situations where one expects such suppressed power spectra and point out their diversity. We then employ an exponential cut-off, which characterizes warm dark matter (WDM) models, as a template for the shape of the cut-off and focus on damping scales ranging from 106 to 109 h -1 M⊙. Using high-resolution simulations, we show that the suppressed part of the power spectrum is quickly (re)generated and catches up with both the linear and the non-linear evolution of the unsuppressed power spectrum. From z = 2 onwards, a power spectrum with a primordial cut-off at 109 h-1 MŁódź, becomes virtually indistinguishable from an evolved cold dark matter (CDM) power spectrum. An attractor such as that described in Zaldarriaga, Scoccimarro & Hui for power spectra with different spectral indices also emerges in the case of truncated power spectra. Measurements of z ∼ 0 non-linear power spectra at ∼100 h-1 kpc cannot rule out the possibility of linear power spectra damped below ∼109 h-1 M ⊙. Therefore, WDM or scenarios with similar features should be difficult to exclude in this way. © 2005 RAS.

A simple model for the evolution of supermassive black holes and the quasar population

Monthly Notices of the Royal Astronomical Society 359:4 (2005) 1363-1378

Authors:

JEG Devriendt, Mahmood, A., Silk, J.

Large Scale Structure in Bekenstein's theory of relativistic Modified Newtonian Dynamics

(2005)

Authors:

C Skordis, DF Mota, PG Ferreira, C Boehm

The 2dF QSO Redshift Survey - III. The input catalogue

Monthly Notices of the Royal Astronomical Society 359:1 (2005) 57-72

Authors:

RJ Smith, SM Croom, BJ Boyle, T Shanks, L Miller, NS Loaring

Abstract:

The 2dF QSO Redshift Survey (2QZ) has obtained redshifts for in excess of 23 000 QSOs selected by their u′, bJ, r colours using the 2-degree Field (2dF) facility at the Anglo-Australian Telescope (AAT). In this paper, we describe the creation of the input catalogue from UK Schmidt photographic plates. All the plate materials used are described along with the techniques developed for flat-fielding variations in the photometric response of photographic emulsions. The selection criteria used for the survey are defined and their rationale discussed. Finally, several simple astrometric and photometric tests are performed. These demonstrate that, over the majority of the parameter space covered by this survey (18.25