The 2dF QSO Redshift Survey - 10K@2K!

ArXiv astro-ph/0103056 (2001)

Authors:

T Shanks, BJ Boyle, SM Croom, F Hoyle, N Loaring, L Miller, PJ Outram, RJ Smith

Abstract:

With ~10000 QSO redshifts, the 2dF QSO Redshift Survey (2QZ) is already the biggest individual QSO survey. The aim for the survey is to have ~25000 QSO redshifts, providing an order of magnitude increase in QSO clustering statistics. We first describe the observational parameters of the 2dF QSO survey. We then describe several highlights of the survey so far; we present new estimates of the QSO luminosity function and the QSO correlation function. We also present the first estimate of the QSO power spectrum from the 2QZ catalogue, probing the form of the fluctuation power-spectrum out to the \~1000h-1Mpc scales only previously probed by COBE. We find a power spectrum which is steeper than the prediction of standard CDM and more consistent with the prediction of Lambda-CDM. The best-fit value for the power spectrum shape parameter for a range of cosmologies is Gamma=0.1+-0.1. Finally, we discuss how the complete QSO survey will be able to constrain the value of Omega_Lambda by combining results from the evolution of QSO clustering and from a geometric test of clustering isotropy.

The 2dF QSO Redshift Survey - IV. The QSO Power Spectrum from the 10k Catalogue

ArXiv astro-ph/0102163 (2001)

Authors:

Fiona Hoyle, PJ Outram, T Shanks, SM Croom, BJ Boyle NS Loaring, L Miller, RJ Smith

Abstract:

(ABRIDGED) We present a power spectrum analysis of the 10K catalogue from the 2dF QSO Redshift Survey. We compare the redshift-space power spectra of QSOs to those measured for galaxies and Abell clusters at low redshift and find that they show similar shapes in their overlap range, 50-150h^{-1}Mpc, with P_QSO(k)\propto k^{-1.4}. The amplitude of the QSO power spectrum at z~1.4 is almost comparable to that of galaxies at the present day if Omega_m=0.3 and Omega_Lambda=0.7 (the Lambda cosmology), and a factor of ~3 lower if Omega_m=1 (the EdS cosmology) is assumed. The amplitude of the QSO power spectrum is a factor of ~10 lower than that measured for Abell clusters at the present day. At larger scales, the QSO power spectra continue to rise robustly to ~400 h^{-1}Mpc, implying more power at large scales than in the APM galaxy power spectrum measured by Baugh & Efstathiou. We split the QSO sample into two redshift bins and find little evolution in the amplitude of the power spectrum. The QSO power spectrum may show a spike feature at ~90h^{-1}Mpc assuming the Lambda cosmology or ~65 h^{-1}Mpc assuming an EdS cosmology. Although the spike appears to reproduce in both the North and South strips and in two independent redshift ranges, its statistical significance is still marginal and more data is needed to test further its reality. We compare the QSO power spectra to CDM models to obtain a constraint on the shape parameter, Gamma. For two choices of cosmology (Omega_m=1, Omega_Lambda=0 and Omega_m=0.3, Omega_Lambda=0.7), we find the best fit model has Gamma~0.1 +-0.1.

Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data

ArXiv astro-ph/0101073 (2001)

Authors:

S Prunet, PAR Ade, JJ Bock, JR Bond, J Borrill, A Boscaleri, K Coble, BP Crill, P de Bernardis, G De Gasperis, G De Troia, PC Farese, PG Ferreira, K Ganga, M Giacometti, E Hivon, VV Hristov, A Iacoangeli, AH Jaffe, AE Lange, L Martinis, S Masi, P Mason, PD Mauskopf, A Melchiorri, L Miglio, T Montroy, CB Netterfield, E Pascale, F Piacentini, D Pogosyan, F Pongetti, S Prunet, S Rao, G Romeo, JE Ruhl, F Scaramuzzi, D Sforna, N Vittorio

Abstract:

We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment's time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.

Asymmetric beams in cosmic microwave background anisotropy experiments

Astrophysical Journal, Supplement Series 132:1 (2001) 1-17

Authors:

JHP Wu, A Balbi, J Borrill, PG Ferreira, S Hanany, AH Jaffe, AT Lee, S Oh, B Rabii, PL Richards, GF Smoot, R Stompor, CD Winant

Abstract:

We propose a new formalism to handle asymmetric beams in the data analysis of cosmic microwave background anisotropy experiments. For any beam shape, the formalism finds the optimal circularly symmetric equivalent and is thus easily adaptable to existing data analysis methods. We demonstrate certain key points by using a simulated highly elliptic beam and the beams and data of the MAXIMA-1 experiment, where the asymmetry is mild. We show that in both cases the formalism does not bias the angular power spectrum estimates. We analyze the limitations of the formalism and find that it is well suited for most practical situations.

Cosmological parameters from the first results of Boomerang

Physical Review D 63:4 (2001)

Authors:

AE Lange, PAR Ade, JJ Bock, JR Bond, J Borrill, A Boscaleri, K Coble, BP Grill, P De Bemardis, P Farese, P Ferreira, K Ganga, M Giacometti, E Hivon, VV Hristov, A Lacoangeli, AH Jaffe, L Martinis, S Masi, PD Mauskopf, A Melchiorri, T Montroy, CB Netterfield, E Pascale, F Piacentini, D Pogosyan, S Prunet, S Rao, G Romeo, JE Ruhl, F Scaramuzzi, D Sforna

Abstract:

The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from .the angular power spectrum measured in the first Antarctic flight of the Boomerang experiment. Within the framework of models, : with adiabatic perturbations, and using only'weakly restrictive prior probabilities on the age of the universe and the Hubble expansion parameter h, we find.that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density Ωbh2 above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the Boomerang data provide clear detections of both dark matter and dark energy contributions to the total energy density fltot, independent of data from high-redshift supernovae. ©2001 The American Physical Society.