Estimate of the Cosmological Bispectrum from the MAXIMA-1 Cosmic Microwave Background Map

Physical Review Letters 88 (2002) 241302 4pp

Authors:

P Ferreira, M. Santos, S. Hanany, J. Magueijo

Observable consequences of cold clouds as dark matter

Monthly Notices of the Royal Astronomical Society 332:2 (2002)

Authors:

E Kerins, J Binney, J Silk

Abstract:

Cold, dense clouds of gas have been proposed to explain the dark matter in Galactic haloes, and have also been invoked in the Galactic disc as an explanation for the excess faint submillimetre sources detected by SCUBA. Even if their dust-to-gas ratio is only a small percentage of that in conventional gas clouds, these dense systems would be opaque to visible radiation. We examine the possibility that the data sets of microlensing experiments searching for massive compact halo objects can also be used to search for occultation signatures by such clouds. We compute the rate and time-scale distribution of stellar transits by clouds in the Galactic disc and halo. We find that, for cloud parameters typically advocated by theoretical models, thousands of transit events should already exist within microlensing survey data sets. We examine the seasonal modulation in the rate caused by the Earth's orbital motion and find it provides an excellent probe of whether detected clouds are of disc or halo origin.

Clustering in the 2dF QSO Redshift Survey

ArXiv astro-ph/0205039 (2002)

Authors:

SM Croom, BJ Boyle, NS Loaring, L Miller, P Outram, T Shanks, RJ Smith, F Hoyle

Abstract:

We present clustering results from the 2dF QSO Redshift Survey (2QZ) which currently contains over 20,000 QSOs at z<3. The two-point correlation function of QSOs averaged over the entire survey (~1.5) is found to be similar to that of local galaxies. When sub-dividing the sample as a function of redshift, we find that for an Einstein-de Sitter universe QSO clustering is constant (in comoving coordinates) over the entire redshift range probed by the 2QZ, while in a universe with Omega_0=0.3 and Lambda_0=0.7 there is a marginal increase in clustering with redshift. Sub-dividing the 2QZ on the basis of apparent magnitude we find only a slight difference between the clustering of QSOs of different apparent brightness, with the brightest QSOs having marginally stronger clustering. We have made a first measurement of the redshift space distortion of QSO clustering, with the goal of determining the value of cosmological parameters (in partcular Lambda_0) from geometric distortions. The current data do not allow us to discriminate between models, however, in combination with constraints from the evolution of mass clustering we find Omega_0=1-Lambda_0=0.23 +0.44-0.13 and beta(z~1.4)=0.39 +0.18-0.17. The full 2QZ data set will provide further cosmological constraints.

The 2dF QSO Redshift Survey - IX. A measurement of the luminosity dependence of QSO clustering

ArXiv astro-ph/0205036 (2002)

Authors:

Scott M Croom, BJ Boyle, NS Loaring, L Miller, PJ Outram, T Shanks, RJ Smith

Abstract:

In this Paper we present a clustering analysis of QSOs as a function of luminosity over the redshift range z=0.3-2.9. We use a sample of 10566 QSOs taken from the preliminary data release catalogue of the 2dF QSO Redshift Survey (2QZ). We analyse QSO clustering as a function of apparent magnitude. The strong luminosity evolution of QSOs means that this is approximately equivalent to analysing the data as a function of absolute magnitude relative to M* over the redshift range that the 2QZ probes. Over the relatively narrow range in apparent magnitude of the 2QZ we find no significant (>2sigma) variation in the strength of clustering, however, there is marginal evidence for QSOs with brighter apparent magnitudes having a stronger clustering amplitude. QSOs with 18.25

Solar neutrinos: probing the quasi-isothermal solar core produced by supersymmetric dark matter particles.

Phys Rev Lett 88:15 (2002) 151303

Authors:

Ilídio P Lopes, Joseph Silk

Abstract:

SNO measurements strongly constrain the central temperature of the Sun, to within a precision of much less than 1%. This result can be used to probe the parameter space of supersymmetric dark matter. In this first analysis we find a lower limit for the weakly interacting massive particle (WIMP) mass of 60 GeV. Furthermore, in the event that WIMPs create a quasi-isothermal core, they will produce a peculiar distribution of the solar neutrino fluxes measured on Earth. Typically, a WIMP with a mass of 100 GeV and annihilation cross section of 10(-34) cm(3)/sec will decrease the neutrino predictions, by up to 4% for the Cl, by 3% for the heavy water, and by 1% for the Ga detectors.