Method for automatically detecting objects of predefined size within an image

9/202,060

Abstract:

The digital representation of the image is sequentially subjected to the following steps: (i) applying the Fourier transform to the original image; (ii) defining a critical Fourier wavelength equal to the predefined size of the objects; (iii) applying one of the techniques of entropy maximization or cross-entropy minimization to the original image to create the new image wherein (a) the amplitudes and the phases of the Fourier components of the new image with wavelengths that are shorter than the critical Fourier wavelength are substantially the same as the amplitudes and the phases of the Fourier components of the original image, and wherein (b) for the amplitudes and the phases of Fourier components having wavelengths that are longer than the critical wavelength, new values are estimated so that either image cross-entropy is minimized or image entropy is maximized.

Modelling baryonic feedback for survey cosmology

Authors:

NE Chisari, AJ Mead, S Joudaki, P Ferreira, A Schneider, J Mohr, T Tröster, D Alonso, IG McCarthy, S Martin-Alvarez, JULIEN Devriendt, A Slyz, MPV Daalen

Abstract:

Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0

New Horizon: On the origin of the stellar disk and spheroid of field galaxies

Authors:

M-J Park, SK Yi, Y Dubois, C Pichon, T Kimm, JULIEN Devriendt, H Choi, M Volonteri, S Kaviraj, S Peirani

Abstract:

The origin of the disk and spheroid of galaxies has been a key open question in understanding their morphology. Using the high-resolution cosmological simulation, New Horizon, we explore kinematically decomposed disk and spheroidal components of 144 field galaxies with masses greater than $\rm 10^9\,M_{\odot}$ at $z=0.7$. The origins of stellar particles are classified according to their birthplace (in situ or ex situ) and their orbits at birth. Before disk settling, stars form mainly through chaotic mergers between proto-galaxies and become part of the spheroidal component. When disk settling starts, we find that more massive galaxies begin to form disk stars from earlier epochs; massive galaxies commence to develop their disks at $z\sim1-2$, while low-mass galaxies do after $z\sim1$. The formation of disks is affected by accretion as well, as mergers can trigger gas turbulence or induce misaligned gas infall that prevents galaxies from forming co-rotating disk stars. The importance of accreted stars is greater in more massive galaxies, especially in developing massive spheroids. A significant fraction of the spheroids comes from the disk stars that are perturbed, which becomes more important at lower redshifts. Some ($\sim12.5\%$) of our massive galaxies develop counter-rotating disks from the gas infall misaligned with the existing disk plane, which can last for more than a Gyr until they become the dominant component, and flip the angular momentum of the galaxy in the opposite direction. The final disk-to-total ratio of a galaxy needs to be understood in relation to its stellar mass and accretion history. We quantify the significance of the stars with different origins and provide them as guiding values.

New Horizons in Cosmology with Spectral Distortions of the Cosmic Microwave Background

Authors:

J Chluba, Mh Abitbol, N Aghanim, Y Ali-Haimoud, M Alvarez, K Basu, B Bolliet, C Burigana, P de Bernardis, J Delabrouille, E Dimastrogiovanni, F Finelli, D Fixsen, L Hart, C Hernandez-Monteagudo, Jc Hill, A Kogut, K Kohri, J Lesgourgues, B Maffei, J Mather, S Mukherjee, Sp Patil, A Ravenni, M Remazeilles, A Rotti, Ja Rubino-Martin, J Silk, Ra Sunyaev, Er Switzer

Abstract:

Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, possible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals.

New Horizons in Cosmology with Spectral Distortions of the Cosmic Microwave Background

Authors:

J Chluba, Mh Abitbol, N Aghanim, Y Ali-Haimoud, M Alvarez, K Basu, B Bolliet, C Burigana, P de Bernardis, J Delabrouille, E Dimastrogiovanni, F Finelli, D Fixsen, L Hart, C Hernandez-Monteagudo, Jc Hill, A Kogut, K Kohri, J Lesgourgues, B Maffei, J Mather, S Mukherjee, Sp Patil, A Ravenni, M Remazeilles, A Rotti, Ja Rubino-Martin, J Silk, Ra Sunyaev, Er Switzer

Abstract:

Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, possible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals.