KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear

Authors:

S Joudaki, H Hildebrandt, D Traykova, Ne Chisari, C Heymans, A Kannawadi, K Kuijken, Ah Wright, M Asgari, T Erben, H Hoekstra, B Joachimi, L Miller, T Tröster, JL van den Busch

Abstract:

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8 \sigma$ reduction in the DES-inferred value for $S_8$. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5\sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.

KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear

Astronomy and Astrophysics: a European journal EDP Sciences

Authors:

S Joudaki, H Hildebrandt, D Traykova, Ne Chisari, C Heymans, A Kannawadi, K Kuijken, Ah Wright, M Asgari, T Erben, H Hoekstra, B Joachimi, L Miller, T Tröster, JL van den Busch

Abstract:

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8 \sigma$ reduction in the DES-inferred value for $S_8$. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5\sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.

KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Authors:

H Hildebrandt, F Köhlinger, JLVD Busch, B Joachimi, C Heymans, A Kannawadi, AH Wright, M Asgari, C Blake, H Hoekstra, S Joudaki, K Kuijken, LANCE Miller, CB Morrison, T Tröster, A Amon, M Archidiacono, S Brieden, A Choi, JTAD Jong, T Erben, B Giblin, A Mead, JA Peacock, M Radovich, P Schneider, C Sifón, M Tewes

Abstract:

We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and - most importantly - solidify our knowledge of the redshift distributions of the sources. Based on a flat $\Lambda$CDM model we find $S_8\equiv\sigma_8\sqrt{\Omega_{\rm m}/0.3}=0.737_{-0.036}^{+0.040}$ in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with $S_8$ differing by $2.3\sigma$. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The COSMOS-2015-calibrated KiDS redshift distributions are however discrepant with the results from our extensive spectroscopic calibration sample and the distributions recovered using angular clustering measurements, which we deem more reliable. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys.

KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Astronomy and Astrophysics: a European journal EDP Sciences

Authors:

H Hildebrandt, F Köhlinger, JLVD Busch, B Joachimi, C Heymans, A Kannawadi, AH Wright, M Asgari, C Blake, H Hoekstra, S Joudaki, K Kuijken, LANCE Miller, CB Morrison, T Tröster, A Amon, M Archidiacono, S Brieden, A Choi, JTAD Jong, T Erben, B Giblin, JA Peacock, A Mead, M Radovich

Abstract:

We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and - most importantly - solidify our knowledge of the redshift distributions of the sources. Based on a flat $\Lambda$CDM model we find $S_8\equiv\sigma_8\sqrt{\Omega_{\rm m}/0.3}=0.737_{-0.036}^{+0.040}$ in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with $S_8$ differing by $2.3\sigma$. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The COSMOS-2015-calibrated KiDS redshift distributions are however discrepant with the results from our extensive spectroscopic calibration sample and the distributions recovered using angular clustering measurements, which we deem more reliable. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys.

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

Authors:

HARLEY Katz, S Martin-Alvarez, JULIEN Devriendt, A Slyz, T Kimm

Abstract:

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. We present a suite of simulations where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm which we suggest will be an important tool for future cosmological MHD simulations.