Combining cosmic shear data with correlated photo-$z$ uncertainties: constraints from DESY1 and HSC-DR1

(2022)

Authors:

Carlos García-García, David Alonso, Pedro G Ferreira, Boryana Hadzhiyska, Andrina Nicola, Carles Sánchez, Anže Slosar

Impact of the Universe's expansion rate on constraints on modified growth of structure

Physical Review D American Physical Society 106:8 (2022) 83523

Authors:

Jaime Ruiz-Zapatero, David Alonso, Pedro G Ferreira, Carlos Garcia-Garcia

Abstract:

In the context of modified gravity, at the linear level, the growth of structure in the Universe will be affected by modifications to the Poisson equation and by the background expansion rate of the Universe. It has been shown that these two effects lead to a degeneracy which must be properly accounted for if one is to place reliable constraints on new forces on large scales or, equivalently, modifications to general relativity. In this paper we show that current constraints are such that assumptions about the background expansion have little impact on constraints on modifications to gravity. We do so by considering the background of a flat, Λ cold dark matter universe, a universe with a more general equation of state for the dark energy, and finally, a general, model-independent, expansion rate. We use Gaussian processes to model modifications to Poisson's equation and, in the case of a general expansion rate, to model the redshift-dependent Hubble rate. We identify a degeneracy between modifications to Poisson's equation and the background matter density, ωM, which can only be broken by assuming a model-dependent expansion rate. We show that, with current data, the constraints on modifications to the Poisson equation via measurements of the growth rate range between 10-20% depending on the strength of our assumptions on the Universe's expansion rate.

Two modes of LyC escape from bursty star formation: implications for [C II] deficits and the sources of reionization

Monthly Notices of the Royal Astronomical Society Oxford University Press 518:1 (2022) 270-285

Authors:

Harley Katz, Aayush Saxena, Joki Rosdahl, Taysun Kimm, Jeremy Blaizot, Thibault Garel, Leo Michel-Dansac, Martin Haehnelt, Richard S Ellis, Laura Penterrici, Julien Devriendt, Adrianne Slyz

Abstract:

We use the SPHINX20 cosmological radiation hydrodynamics simulation to study how Lyman continuum (LyC) photons escape from galaxies and the observational signatures of this escape. We define two classes of LyC leaker: Bursty Leakers and Remnant Leakers, based on their star formation rates (SFRs) that are averaged over 10 Myr (SFR10) or 100 Myr (SFR100). Both have fesc>20 per cent and experienced an extreme burst of star formation, but Bursty Leakers have SFR10 > SFR100, while Remnant Leakers have SFR10 < SFR100. The maximum SFRs in these bursts were typically ∼100 times greater than the SFR of the galaxy prior to the burst, a rare 2σ outlier among the general high-redshift galaxy population. Bursty Leakers are qualitatively similar to ionization-bounded nebulae with holes, exhibiting high ionization parameters and typical H II region gas densities. Remnant Leakers show properties of density-bounded nebulae, having normal ionization parameters but much lower H II region densities. Both types of leaker exhibit [C II]158μm deficits on the [C II]–SFR100 relation, while only Bursty Leakers show deficits when 10 is used. We predict that [C II] luminosity and SFR indicators such as Hα and M1500Å can be combined to identify both types of LyC leaker and the mode by which photons are escaping. These predictions can be tested with [C II] observations of known z = 3–4 LyC leakers. Finally, we show that leakers with fesc>20 per cent dominate the ionizing photon budget at z ≳ 7.5 but the contribution from galaxies with fesc<5 per cent becomes significant at the tail-end of reionization.

An active convective 4He heat switch

Cryogenics Elsevier 128 (2022) 103585

Authors:

Andrew J May, Susanna Azzoni, Simon Melhuish, Lucio Piccirillo, Daniel Seal, Thomas Sweetnam, Joseph Winnicki

Abstract:

The design and experimental demonstration are reported of an active convective heat switch suitable for use at cryogenic temperatures. The switch is mechanically simple, relatively inexpensive, and requires no moving parts, instead being operated entirely using heaters. The working gas used is <4> He in a closed cycle and, as such, the switch requires no external gas connections. Closed conductances on the order of 50 mW/K have been demonstrated with residual open conductances on the order of 0.4 mW/K. Novel modelling is presented which shows excellent agreement with the experimental data and significant improvement over existing models.

Black hole merger simulations in wave dark matter environments

arXiv:2210.09254 [gr-qc]

Authors:

Jamie Bamber, Josu C. Aurrekoetxea, Katy Clough, Pedro G. Ferreira

Abstract:

The interaction of binary black hole mergers with their environments can be studied using numerical relativity simulations. These start only a short finite time before merger, at which point appropriate initial conditions must be imposed. A key task is therefore to identify the configuration that is appropriate for the binary and its environment at this stage of the evolution. In this work we study the behaviour of wave dark matter around equal mass black hole binaries, finding that there is a preferred, quasi-stationary profile that persists and grows over multiple orbits, in contrast to heavier mass dark matter where any overdensity tends to be dispersed by the binary motion. Whilst different initial configurations converge to the preferred quasi-stationary one after several orbits, unwanted transient oscillations are generated in the process, which may impact on the signal in short simulation runs. We also point out that naively superimposing the matter onto a circular binary results in artificially eccentric orbits due to the matter backreaction, which is an effect of the initial conditions and not a signature of dark matter. We discuss the further work required so that comparison of waveforms obtained with environments to vacuum cases can be done in a meaningful way.