Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates.
Physical review letters 129:26 (2022) 261104
Abstract:
We show that the most general scalar-tensor theory of gravity up to four derivatives in 3+1 dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by studying equal mass black hole binary mergers for different values of the coupling constants. Although our analysis of well-posedness is restricted to cases in which the couplings are small, we find that in simulations we are able to push the couplings to larger values, so that a certain weak coupling condition is order one, without instabilities developing. Our Letter provides the means for such simulations to be undertaken by the many numerical relativity codes that rely on the moving puncture gauge to evolve black hole singularities.Constraints on dark matter annihilation and decay from the large-scale structure of the nearby Universe
Physical Review D American Physical Society 106:10 (2022) 103526
Abstract:
Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modeling the flux from specific dark matter-rich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of a suite of constrained N-body simulations (csiborg) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalizing over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov chain Monte Carlo analysis. We rule out the thermal relic cross section for s-wave annihilation for all mχ7 GeV/c2 at 95% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at 3.3σ. Although this could be due to dark matter decay via these channels with a decay rate Γ≈6×10-28 s-1, we find that a power-law spectrum of index p=-2.75-0.46+0.71, likely of baryonic origin, is preferred by the data.VINTERGATAN-GM: The cosmological imprints of early mergers on Milky-Way-mass galaxies
(2022)
Evidence for non-merger co-evolution of galaxies and their supermassive black holes
(2022)
Population statistics of intermediate mass black holes in dwarf galaxies using the NewHorizon simulation
(2022)