Supplementary material to "Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing"

(2021)

Authors:

Matthew Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel McCoy, Daniel McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, Tianle Yuan

Contrasting responses of idealised and realistic simulations of shallow cumuli to aerosol perturbations

Geophysical Research Letters Wiley 48:13 (2021) e2021GL094137

Authors:

George Spill, Philip Stier, Paul R Field, Guy Dagan

Abstract:

Shallow clouds remain greatly significant in improving our understanding of the atmosphere. Using the Met Office Unified Model, we compare highly idealised simulations of shallow cumuli with those using more realistic domains, with open lateral boundaries and varying large-scale forcing. We find that the realistic simulations are more capable of representing the cloud field on large spatial scales, and appear to limit the aerosol perturbations leading to impacts on the thermodynamic conditions. Aerosol perturbations lead to changes in the cloud vertical structure, and thermodynamic evolution of the idealised simulations; a central feature of behavior seen previously in idealised simulations. Modelling approaches with open boundaries and time-varying forcing may allow for improved representation of shallow clouds in the atmosphere, and greater understanding of how they may respond to perturbations.

On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations

Atmospheric Chemistry and Physics European Geosciences Union 21:13 (2021) 10179-10197

Authors:

Duncan Watson-Parris, Shipeng Zhang, Philip Stier

Abstract:

Changes in global-mean precipitation are strongly constrained by global radiative cooling, while regional rainfall changes are less constrained because energy can be transported. Absorbing and non-absorbing aerosols have different effects on both global-mean and regional precipitation, due to the distinct effects on energetics. This study analyses the precipitation responses to large perturbations in black carbon (BC) and sulfate (SUL) by examining the changes in atmospheric energy budget terms on global and regional scales, in terms of fast (independent of changes in sea surface temperature, SST) and slow responses (mediated by changes in SST). Changes in atmospheric radiative cooling/heating are further decomposed into contributions from clouds, aerosols, and clear–clean sky (without clouds or aerosols). Both cases show a decrease in global-mean precipitation, which is dominated by fast responses in the BC case and slow responses in the SUL case. The geographical patterns are distinct too. The intertropical convergence zone (ITCZ), accompanied by tropical rainfall, shifts northward in the BC case, while it shifts southward in the SUL case. For both cases, energy transport terms from the slow response dominate the changes in tropical rainfall, which are associated with the northward (southward) shift of the Hadley cell in response to the enhanced southward (northward) cross-equatorial energy flux caused by increased BC (SUL) emission. The extra-tropical precipitation decreases in both cases. For the BC case, fast responses to increased atmospheric radiative heating contribute most to the reduced rainfall, in which absorbing aerosols directly heat the mid-troposphere, stabilise the column, and suppress precipitation. Unlike BC, non-absorbing aerosols decrease surface temperatures through slow processes, cool the whole atmospheric column, and reduce specific humidity, which leads to decreased radiative cooling from the clear–clean sky, which is consistent with the reduced rainfall. Examining the changes in large-scale circulation and local thermodynamics qualitatively explains the responses of precipitation to aerosol perturbations, whereas the energetic perspective provides a method to quantify their contributions.

Isolating large-scale smoke impacts on cloud and precipitation processes over the Amazon with convection permitting resolution

Journal of Geophysical Research: Atmospheres American Geophysical Union 126:13 (2021) e2021JD034615

Authors:

Ross Herbert, Philip Stier, Guy Dagan

Abstract:

Absorbing aerosol from biomass burning impacts the hydrological cycle and radiation fluxes both directly and indirectly via modifications to convective processes and cloud development. Using the ICON model in a regional configuration with 1500 m convection-permitting resolution, we isolate the response of the Amazonian atmosphere to biomass burning smoke via enhanced cloud droplet number concentrations Nd (aerosol-cloud-interactions; ACI) and changes to radiative fluxes (aerosol-radiation-interactions; ARI) over a period of 8 days. We decompose ARI into contributions from reduced shortwave radiation and localized heating of the smoke. We show ARI influences the formation and development of convective cells: surface cooling below the smoke drives suppression of convection that increases with smoke optical depth, whilst the elevated heating promotes initial suppression and subsequent intensification of convection overnight; a corresponding diurnal response (repeating temporal response day-after-day) from high precipitation rates is shown. Enhanced Nd (ACI) perturbs the bulk cloud properties and suppresses low-to-moderate precipitation rates. Both ACI and ARI result in enhanced high-altitude ice clouds that have a strong positive longwave radiative effect. Changes to low-cloud coverage (ARI) and albedo (ACI) drive an overall negative shortwave radiative effect, that slowly increases in magnitude due to a moistening of the boundary layer. The overall net radiative effect is dominated by the enhanced high-altitude clouds, and is sensitive to the plume longevity. The considerable diurnal responses that we simulate cannot be observed by polar orbiting satellites widely used in previous work, highlighting the potential of geostationary satellites to observe large-scale impacts of aerosols on clouds.

AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements

Atmospheric Chemistry and Physics Copernicus Publications 21:9 (2021) 6895-6917

Authors:

Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, Philip Stier

Abstract:

Global measurements of absorbing aerosol optical depth (AAOD) are scarce and mostly provided by the ground network AERONET (AErosol RObotic NETwork). In recent years, several satellite products of AAOD have been developed. This study's primary aim is to establish the usefulness of these datasets for AEROCOM (Aerosol Comparisons between Observations and Models) model evaluation with a focus on the years 2006, 2008 and 2010. The satellite products are super-observations consisting of  min aggregated retrievals.

This study consists of two papers, the current one that deals with the assessment of satellite observations and a second paper (Schutgens et al., 2021) that deals with the evaluation of models using those satellite data. In particular, the current paper details an evaluation with AERONET observations from the sparse AERONET network as well as a global intercomparison of satellite datasets, with a focus on how minimum AOD (aerosol optical depth) thresholds and temporal averaging may improve agreement between satellite observations.

All satellite datasets are shown to have reasonable skill for AAOD (three out of four datasets show correlations with AERONET in excess of 0.6) but less skill for SSA (single-scattering albedo; only one out of four datasets shows correlations with AERONET in excess of 0.6). In comparison, satellite AOD shows correlations from 0.72 to 0.88 against the same AERONET dataset. However, we show that performance vs. AERONET and inter-satellite agreements for SSA improve significantly at higher AOD. Temporal averaging also improves agreements between satellite datasets. Nevertheless multi-annual averages still show systematic differences, even at high AOD. In particular, we show that two POLDER (Polarization and Directionality of the Earth's Reflectances) products appear to have a systematic SSA difference over land of ∼0.04, independent of AOD. Identifying the cause of this bias offers the possibility of substantially improving current datasets.

We also provide evidence that suggests that evaluation with AERONET observations leads to an underestimate of true biases in satellite SSA.

In the second part of this study we show that, notwithstanding these biases in satellite AAOD and SSA, the datasets allow meaningful evaluation of AEROCOM models.