Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic

Atmospheric Chemistry and Physics European Geosciences Union 22:16 (2022) 10789-10807

Authors:

Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, Lucia Deaconu

Abstract:

The semi-permanent stratocumulus clouds over the south-eastern Atlantic Ocean (SEA) can act as an “air conditioner” to the regional and global climate system. The interaction of aerosols and clouds becomes important in this region and can lead to negative radiative effects, partially offsetting the positive radiative forcing of greenhouse gases. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). In this paper, we use the United Kingdom Earth System Model (UKESM1) to investigate the sources of CCN (from emissions and atmospheric processes) in the SEA as well as the response of the cloud droplet number concentration (CDNC), the cloud liquid water path (LWP), and radiative forcing to these sources during 2016 and 2017. Overall, free and upper troposphere nucleated aerosols are the dominant source of the boundary layer CCN concentration at 0.2 % supersaturation (CCN0.2 %), contributing an annual average of ∼ 41 % as they subside and entrain into the marine boundary layer, which is consistent with observations highlighting the important role of nucleation in the boundary layer CCN concentration. In terms of emission sources, anthropogenic emissions (from energy, industry, agriculture, etc.) contribute the most to the annual average CCN0.2 % in the marine boundary layer (∼ 26 %), followed by biomass burning (BB, ∼ 17 %). In the cloud layer, BB contributes about 34 % of the annual CCN0.2 %, midway between the contributions from aerosol nucleation (36 %) and anthropogenic sources (31 %). The contribution of aerosols from different sources to the CDNC is consistent with their contribution to CCN0.2 % within the marine boundary layer, with free and upper troposphere aerosol nucleation being the most important source of the CDNC overall. In terms of emission sources, anthropogenic sources are also the largest contributors to the annual average CDNC, closely followed by BB. However, during the BB season, BB and free and upper troposphere aerosol nucleation are equally the most important sources of the CDNC. The contribution of BB to the CDNC is more significant than its increase to CCN0.2 %, mainly because BB aerosols are mostly located directly above the inversion layer in the model; thus, they can increase the in-cloud CDNC by enhancing the supersaturation through the dynamical feedback due to short-wave absorption. An aerosol source that shows an increase in the CDNC also shows an increase in the LWP resulting from a reduction in autoconversion. Due to the absorption effect, BB aerosol can enhance existing temperature inversions and reduce the entrainment of sub-saturated air, leading to a further increase in the LWP. As a result, the contribution of BB to the LWP is second only to aerosol nucleation on annual averages. These findings demonstrate that BB is not the dominant source of CCN within the marine boundary layer from an emission source perspective. However, as most BB aerosols are located directly above the inversion layer, their effect on clouds increases due to their absorption effect (about the same as anthropogenic sources for the CDNC and more than anthropogenic sources for the LWP), highlighting the crucial role of their radiative effect on clouds. The results on the radiative effects of aerosols show that BB aerosol exhibits an overall positive RFari (radiative forcing associated with aerosol–radiation interactions), but its net effective radiative forcing remains negative due to its effect on clouds (mainly due to its absorbing effect). By quantifying aerosol and cloud properties affected by different sources, this paper provides a framework for understanding the effects of aerosol sources on marine stratocumulus clouds and radiation in the SEA.

Productivity meets Performance: Julia on A64FX

ArXiv 2207.12762 (2022)

Authors:

Mosè Giordano, Milan Klöwer, Valentin Churavy

Physics-Informed Learning of Aerosol Microphysics

(2022)

Authors:

Paula Harder, Duncan Watson-Parris, Philip Stier, Dominik Strassel, Nicolas R Gauger, Janis Keuper

Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol

Nature Climate Change Springer Nature 12:8 (2022) 735-742

Authors:

Andrew IL Williams, Philip Stier, Guy Dagan, Duncan Watson-Parris

Abstract:

Over the coming decades, it is expected that the spatial pattern of anthropogenic aerosol will change dramatically and the global aerosol composition will become relatively more absorbing. Yet, the climatic impact of this evolving spatial pattern of absorbing aerosol has received relatively little attention, in particular its impact on global-mean effective radiative forcing. Here, using model experiments, we show that the effective radiative forcing from absorbing aerosol varies strongly depending on their location, driven by rapid adjustments of clouds and circulation. Our experiments generate positive effective radiative forcing in response to aerosol absorption throughout the midlatitudes and most of the tropical regions, and a strong ‘hot spot’ of negative effective radiative forcing in response to aerosol absorption over the tropical Western Pacific. Further, these diverse responses can be robustly attributed to changes in atmospheric dynamics and highlight the importance of this ‘aerosol pattern effect’ for transient forcing from regional biomass-burning aerosol.

Examining the regional co-variability of the atmospheric water and energy imbalances in different model configurations – linking clouds and circulation

Journal of Advances in Modeling Earth Systems American Geophysical Union 14:6 (2022) e2021MS002951

Authors:

guy Dagan, Philip Stier, Elisabeth Dingley, Andrew Williams

Abstract:

Clouds are a key player in the global climate system, affecting the atmospheric water and energy budgets, and they are strongly coupled to the large-scale atmospheric circulation. Here, we examine the co-variability of the atmospheric energy and water budget imbalances in three different global model configurations–radiative-convective equilibrium, aqua-planet, and global simulations with land. The gradual increase in the level of complexity of the model configuration enables an investigation of the effects of rotation, meridional temperature gradient, land-sea contrast, and seasonal cycle on the co-variability of the water and energy imbalances. We demonstrate how this co-variability is linked to both the large-scale tropical atmospheric circulation and to cloud properties. Hence, we propose a co-variability-based framework that connects cloud properties to the large-scale tropical circulation and climate system and is directly linked to the top-down constrains on the system—the water and energy budgets. In addition, we examine how the water and energy budget imbalances co-variability depends on the temporal averaging scale, and explain its dependency on how stationary the circulation is in the different model configurations. Finally, we demonstrate the effect of an idealized global warming and convective aggregation on this co-variability.