QUBIC: The Q & U Bolometric Interferometer for Cosmology

Journal of Low Temperature Physics Springer Science and Business Media LLC 199:1-2 (2020) 482-490

Authors:

Es Battistelli, P Ade, Jg Alberro, A Almela, G Amico, Lh Arnaldi, D Auguste, J Aumont, S Azzoni, S Banfi, P Battaglia, A Baù, B Bélier, D Bennett, L Bergé, J-Ph Bernard, M Bersanelli, M-A Bigot-Sazy, N Bleurvacq, J Bonaparte, J Bonis, A Bottani, E Bunn, D Burke, F Cavaliere

VLT/SINFONI study of black hole growth in high-redshift radio-loud quasars from the CARLA survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:2 (2020) 1991-2016

Authors:

M Marinello, RA Overzier, HJA Röttgering, JD Kurk, C De Breuck, J Vernet, D Wylezalek, D Stern, KJ Duncan, N Hatch, N Kashikawa, Y-T Lin, RS Nemmen, A Saxena

Reionization history constraints from neural network based predictions of high-redshift quasar continua

Monthly Notices of the Royal Astronomical Society Oxford University Press 493:3 (2020) 4256-4275

Authors:

D Ďurovčíková, H Katz, SEI Bosman, FB Davies, J Devriendt, A Slyz

Abstract:

Observations of the early Universe suggest that reionization was complete by z ∼ 6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα. Our QSANNDRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNDRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z = 7.0851 and ULAS J1342+0928 at z = 7.5413, respectively. Using our more accurate reconstructions of these two z > 7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find x¯H1=0.25+0.05−0.05 at z = 7.0851 and x¯H1=0.60+0.11−0.11 at z = 7.5413. Our results are consistent with the literature and favour a rapid end to reionization.

The faint radio source population at 15.7 GHz – IV. The dominance of core emission in faint radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2841-2853

Authors:

Imogen Whittam, DA Green, Matthew Jarvis, JM Riley

Abstract:

We present 15-GHz Karl G. Jansky Very Large Array observations of a complete sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C) survey. 67 out of the 95 sources (71 per cent) are unresolved in the new observations and lower frequency radio observations, placing an upper limit on their angular size of ∼2 arcsec. Thus, compact radio galaxies, or radio galaxies with very faint jets, are the dominant population in the 10C survey. This provides support for the suggestion in our previous work that low-luminosity (⁠L<1025W~Hz−1⁠) radio galaxies are core dominated, although higher resolution observations are required to confirm this directly. The 10C sample of compact, high-frequency selected radio galaxies is a mixture of high-excitation and low-excitation radio galaxies and displays a range of radio spectral shapes, demonstrating that they are a mixed population of objects.

The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters

(2020)

Authors:

Maxime Trebitsch, Yohan Dubois, Marta Volonteri, Hugo Pfister, Corentin Cadiou, Harley Katz, Joakim Rosdahl, Taysun Kimm, Christophe Pichon, Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz

Abstract:

We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to z = 3.5. The simulation resolves haloes down to the atomic cooling limit, and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The Obelisk project is designed specifically to study the coevolution of high redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to high redshift protoclusters. We find that hydrogen reionization happens inside-out and is completed by z ∼ 6 in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at z ∼ 4.