The VANDELS survey: a strong correlation between Ly alpha equivalent width and stellar metallicity at 3 <= z <= 5
Monthly Notices of the Royal Astronomical Society Oxford University Press 495:1 (2020) 1501-1510
Abstract:
We present the results of a new study investigating the relationship between observed Ly α equivalent width (Wλ(Ly α)) and the metallicity of the ionizing stellar population (Z★) for a sample of 768 star-forming galaxies at 3 ≤ z ≤ 5 drawn from the VANDELS survey. Dividing our sample into quartiles of rest-frame Wλ(Ly α) across the range −58 Å ≾ Wλ(Ly α) ≾ 110 Å, we determine Z★ from full spectral fitting of composite far-ultraviolet spectra and find a clear anticorrelation between Wλ(Ly α) and Z★. Our results indicate that Z★ decreases by a factor ≳ 3 between the lowest Wλ(Ly α) quartile (≺Wλ(Ly α)≻ = −18 Å) and the highest Wλ(Ly α) quartile (≺Wλ(Ly α)≻ = 24 Å). Similarly, galaxies typically defined as Lyman alpha emitters (LAEs; Wλ(Ly α) > 20 Å) are, on average, metal poor with respect to the non-LAE galaxy population (Wλ(Ly α) ≤ 20 Å) with Z★non-LAE ≳ 2 × Z★LAE. Finally, based on the best-fitting stellar models, we estimate that the increasing strength of the stellar ionizing spectrum towards lower Z★ is responsible for ≈15−25 per cent of the observed variation in Wλ(Ly α) across our sample, with the remaining contribution (≈75−85 per cent) being due to a decrease in the H I/dust covering fractions in low- Z★ galaxies.The e-MERGE Survey (e-MERLIN Galaxy Evolution Survey): overview and survey description
Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 495:1 (2020) 1188-1208
Abstract:
We present an overview and description of the e-MERGE Survey (e-MERLIN Galaxy Evolution Survey) Data Release 1 (DR1), a large program of high-resolution 1.5-GHz radio observations of the GOODS-N field comprising ∼140 h of observations with enhanced-Multi-Element Remotely Linked Interferometer Network (e-MERLIN) and ∼40 h with the Very Large Array (VLA). We combine the long baselines of e-MERLIN (providing high angular resolution) with the relatively closely packed antennas of the VLA (providing excellent surface brightness sensitivity) to produce a deep 1.5-GHz radio survey with the sensitivity (∼1.5μ Jy beam−1), angular resolution (0.2–0.7 arcsec) and field-of-view (∼15 × 15 arcmin2) to detect and spatially resolve star-forming galaxies and active galactic nucleus (AGN) at z ≳ 1. The goal of e-MERGE is to provide new constraints on the deep, sub-arcsecond radio sky which will be surveyed by SKA1-mid. In this initial publication, we discuss our data analysis techniques, including steps taken to model in-beam source variability over an ∼20-yr baseline and the development of new point spread function/primary beam models to seamlessly merge e-MERLIN and VLA data in the uv plane. We present early science results, including measurements of the luminosities and/or linear sizes of ∼500 galaxies selected at 1.5 GHz. In combination with deep Hubble Space Telescope observations, we measure a mean radio-to-optical size ratio of re-MERGE/rHST ∼ 1.02 ± 0.03, suggesting that in most high-redshift galaxies, the ∼GHz continuum emission traces the stellar light seen in optical imaging. This is the first in a series of papers that will explore the ∼kpc-scale radio properties of star-forming galaxies and AGN in the GOODS-N field observed by e-MERGE DR1.New Methods for Identifying Lyman Continuum Leakers and Reionization-Epoch Analogues
(2020)
A Closed-Cycle Miniature Dilution Refrigerator for a Fast-Cooldown 100 mK Detector Wafer Test Cryostat
JOURNAL OF LOW TEMPERATURE PHYSICS 199:3-4 (2020) 771-779
Abstract:
© 2020, The Author(s). The forthcoming generation of cosmic microwave background polarization observatories is developing large format detector arrays which will operate at 100 mK. Given the volume of detector wafers that will be required, fast-cooldown 100 mK test cryostats are increasingly needed. A miniature dilution refrigerator (MDR) has been developed for this purpose and is reported. The MDR is precooled by a double-stage 3He –4He Chase Research Cryogenics sorption refrigerator. The test cryostat based on this MDR will enable fast cooldown to 100 mK to support rapid feedback testing of detector wafers fabricated for the Simons Observatory. The MDR has been designed to provide a 100 mK stage to be retrocompatible with existing CRC10 sorption coolers, reducing the base temperature from 250 mK for the new generation of detectors. Other 250 mK cryostats can be retrofitted in the same way. This configuration will meet the cryogenic requirements for single-wafer testing, providing 5–10 μ W of cooling power at 100 mk for over 8 h. The system operates in a closed cycle, thereby avoiding external gas connections and cold o-rings. No moving parts are required, with the system operated entirely by heaters.QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB
Journal of Low Temperature Physics Springer Science and Business Media LLC (2020)