The performance of photometric reverberation mapping at high redshift and the reliability of damped random walk models

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2019) 3940-3959

Authors:

MATTHEW JARVIS, SC Read, DJB Smith, MJ Jarvis, G Gürkan

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>Accurate methods for reverberation mapping using photometry are highly sought after since they are inherently less resource intensive than spectroscopic techniques. However, the effectiveness of photometric reverberation mapping for estimating black hole masses is sparsely investigated at redshifts higher than z ≈ 0.04. Furthermore, photometric methods frequently assume a damped random walk (DRW) model, which may not be universally applicable. We perform photometric reverberation mapping using the javelin photometric DRW model for the QSO SDSS-J144645.44+625304.0 at z = 0.351 and estimate the Hβ lag of $65^{+6}_{-1}$ d and black hole mass of $10^{8.22^{+0.13}_{-0.15}}\, \mathrm{M_{\odot }}$. An analysis of the reliability of photometric reverberation mapping, conducted using many thousands of simulated CARMA process light curves, shows that we can recover the input lag to within 6 per cent on average given our target’s observed signal-to-noise of &amp;gt;20 and average cadence of 14 d (even when DRW is not applicable). Furthermore, we use our suite of simulated light curves to deconvolve aliases and artefacts from our QSO’s posterior probability distribution, increasing the signal-to-noise on the lag by a factor of ∼2.2. We exceed the signal-to-noise of the Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) campaign with a quarter of the observing time per object, resulting in a ∼200 per cent increase in signal-to-noise efficiency over SDSS-RM.</jats:p>

Tomographic measurement of the intergalactic gas pressure through galaxy–tSZ cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:4 (2019) 5464-5480

Authors:

Nikolaos Koukoufilippas, David Alonso, M Bilicki, JA Peacock

Abstract:

We cross-correlate maps of the thermal Sunyaev–Zeldovich (tSZ) Compton-y parameter published by Planck with the projected distribution of galaxies in a set of low-redshift tomographic bins. We use the nearly full-sky 2MASS Photometric Redshift and WISE × SuperCOSMOS public catalogues, covering the redshift range z ≲ 0.4. Our measurements allow us to place constraints on the redshift dependence of the mass–observable relation for tSZ cluster count analyses in terms of the so-called hydrostatic mass bias parameter 1−bH⁠. These results can also be interpreted as measurements of the bias-weighted average gas pressure 〈bPe〉 as a function of redshift, a quantity that can be related to the thermodynamics of gas inside haloes and used to constrain energy injection processes. We measure 1−bH with ∼13 per cent precision in six equispaced redshift bins, and find no evidence for a redshift-dependent mass bias parameter, in agreement with previous analyses. Our mean value of 1−bH=0.59±0.03 is also in good agreement with the one estimated by the joint analysis of Planck cluster counts and cosmic microwave background anisotropies. Our measurements of 〈bPe〉, at the level of ∼10 per cent in each bin, are the most stringent constraints on the redshift dependence of this parameter to date, and agree well both with previous measurements and with theoretical expectations from shock-heating models.

Simulating MOS science on the ELT: Ly alpha forest tomography

Astronomy and Astrophysics EDP Sciences 632:December 2019 (2019) A94

Authors:

J Japelj, Clotilde Laigle, M Puech, C Pichon, H Rahmani, Y Dubois, Julien Devriendt, P Petitjean, F Hammer, E Gendron, L Kaper, S Morris, N Pirzkal, R Sanchez-Janssen, Adrianne Slyz, SD Vergani, Y Yang

Abstract:

Mapping of the large-scale structure through cosmic time has numerous applications in the studies of cosmology and galaxy evolution. At $z > 2$, the structure can be traced by the neutral intergalactic medium (IGM) by way of observing the Ly$\alpha$, forest towards densely-sampled lines-of-sight of bright background sources, such as quasars and star forming galaxies. We investigate the scientific potential of MOSAIC, a planned multi-object spectrograph on the European Extremely Large Telescope (ELT), for the 3D mapping of the IGM at $z \gtrsim 3$. We simulate a survey of $3 \lesssim z \lesssim 4$ galaxies down to a limiting magnitude of $m_{r}\sim 25.5$ mag in an area of 1 degree$^2$ in the sky. Galaxies and their spectra (including the line-of-sight Ly$\alpha$ absorption) are taken from the lightcone extracted from the Horizon-AGN cosmological hydrodynamical simulation. The quality of the reconstruction of the original density field is studied for different spectral resolutions and signal-to-noise ratios of the spectra. We demonstrate that the minimum $S/N$ (per resolution element) of the faintest galaxies that such survey has to reach is $S/N = 4$. We show that a survey with such sensitivity enables a robust extraction of cosmic filaments and the detection of the theoretically-predicted galaxy stellar mass and star-formation rate gradients towards filaments. By simulating the realistic performance of MOSAIC we obtain $S/N(T_{\rm obs}, R, m_{r})$ scaling relations. We estimate that $\lesssim 35~(65)$ nights of observation time are required to carry out the survey with the instrument's high multiplex mode and with the spectral resolution of $R=1000~(2000)$. A survey with a MOSAIC-concept instrument on the ELT is found to enable the mapping of the IGM at $z > 3$ on Mpc scales, and as such will be complementary to and competitive with other planned IGM tomography surveys. [abridged]

Reionization history constraints from neural network based predictions of high-redshift quasar continua

(2019)

Authors:

D Ďurovčíková, H Katz, SEI Bosman, FB Davies, J Devriendt, A Slyz

The impact of the connectivity of the cosmic web on the physical properties of galaxies at its nodes

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:3 (2019) 4294-4309

Authors:

Katarina Kraljic, Christophe Pichon, Sandrine Codis, Clotilde Laigle, Romeel Davé, Yohan Dubois, Ho Seong Hwang, Dmitri Pogosyan, Stéphane Arnouts, Julien Devriendt, Marcello Musso, Sébastien Peirani, Adrianne Slyz, Marie Treyer

Abstract:

We investigate the impact of the number of filaments connected to the nodes of the cosmic web on the physical properties of their galaxies using the Sloan Digital Sky Survey. We compare these measurements to the cosmological hydrodynamical simulations Horizon-(no)AGN and Simba. We find that more massive galaxies are more connected, in qualitative agreement with theoretical predictions and measurements in dark matter only simulation. The star formation activity and morphology of observed galaxies both display some dependence on the connectivity of the cosmic web at fixed stellar mass: less star forming and less rotation supported galaxies also tend to have higher connectivity. These results qualitatively hold both for observed and virtual galaxies, and can be understood given that the cosmic web is the main source of fuel for galaxy growth. The simulations show the same trends at fixed halo mass, suggesting that the geometry of filamentary infall impacts galaxy properties beyond the depth of the local potential well. Based on simulations, it is also found that AGN feedback is key in reversing the relationship between stellar mass and connectivity at fixed halo mass. Technically, connectivity is a practical observational proxy for past and present accretion (minor mergers or diffuse infall).