EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 497:2 (2020) 1508-1520

Authors:

Martin P Rey, Andrew Pontzen, Oscar Agertz, Matthew DA Orkney, Justin I Read, Joakim Rosdahl

Abstract:

ABSTRACT We study how star formation is regulated in low-mass field dwarf galaxies ($10^5 \le M_{\star } \le 10^6 \, \mbox{M}_\mathrm{\odot }$), using cosmological high-resolution ($3 \, \mathrm{pc}$) hydrodynamical simulations. Cosmic reionization quenches star formation in all our simulated dwarfs, but three galaxies with final dynamical masses of $3 \times 10^{9} \, \mbox{M}_\mathrm{\odot }$ are subsequently able to replenish their interstellar medium by slowly accreting gas. Two of these galaxies reignite and sustain star formation until the present day at an average rate of $10^{-5} \, \mbox{M}_\mathrm{\odot } \, \text{yr}^{-1}$, highly reminiscent of observed low-mass star-forming dwarf irregulars such as Leo T. The resumption of star formation is delayed by several billion years due to residual feedback from stellar winds and Type Ia supernovae; even at z = 0, the third galaxy remains in a temporary equilibrium with a large gas content but without any ongoing star formation. Using the ‘genetic modification’ approach, we create an alternative mass growth history for this gas-rich quiescent dwarf and show how a small $(0.2\, \mathrm{dex})$ increase in dynamical mass can overcome residual stellar feedback, reigniting star formation. The interaction between feedback and mass build-up produces a diversity in the stellar ages and gas content of low-mass dwarfs, which will be probed by combining next-generation H i and imaging surveys.

Statistics of a single sky: constrained random fields and the imprint of Bardeen potentials on galaxy clustering

ArXiv 2009.02036 (2020)

Authors:

Vincent Desjacques, Yonadav Barry Ginat, Robert Reischke

Axion Oscillations in Binary Systems: Angle-action Surgery

The Astrophysical Journal American Astronomical Society 901:1 (2020) 85

Authors:

Vincent Desjacques, Evgeni Grishin, Yonadav Barry Ginat

Beyond halo mass: quenching galaxy mass assembly at the edge of filaments

(2020)

Authors:

Hyunmi Song, Clotilde Laigle, Ho Seong Hwang, Julien Devriendt, Yohan Dubois, Katarina Kraljic, Christophe Pichon, Adrianne Slyz, Rory Smith

Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations

Monthly Notices of the Royal Astronomical Society Oxford University Press 498:2 (2020) 2219-2238

Authors:

Marta Volonteri, Hugo Pfister, Ricarda S Beckmann, Yohan Dubois, Monica Colpi, Christopher J Conselice, Massimo Dotti, Garreth Martin, Ryan Jackson, Katarina Kraljic, Christophe Pichon, Maxime Trebitsch, Sukyoung K Yi, Julien Devriendt, Sebastien Peirani

Abstract:

Massive black hole (MBH) coalescences are powerful sources of low-frequency gravitational waves. To study these events in the cosmological context, we need to trace the large-scale structure and cosmic evolution of a statistical population of galaxies, from dim dwarfs to bright galaxies. To cover such a large range of galaxy masses, we analyse two complementary simulations: HORIZON-AGN with a large volume and low resolution that tracks the high-mass (> 107 M☉) MBH population, and NEWHORIZON with a smaller volume but higher resolution that traces the low-mass (< 107 M☉) MBH population. While HORIZON-AGN can be used to estimate the rate of inspirals for pulsar timing arrays, NEWHORIZON can investigate MBH mergers in a statistical sample of dwarf galaxies for LISA, which is sensitive to low-mass MBHs. We use the same method to analyse the two simulations, post-processing MBH dynamics to account for time delays mostly determined by dynamical friction and stellar hardening. In both simulations, MBHs typically merge long after galaxies do, so that the galaxy morphology at the time of the MBH merger is no longer determined by the structural disturbances engendered by the galaxy merger from which the MBH coalescence has originated. These time delays cause a loss of high-z MBH coalescences, shifting the peak of the MBH merger rate to z ∼ 1-2. This study shows how tracking MBH mergers in low-mass galaxies is crucial to probing the MBH merger rate for LISA and investigate the properties of the host galaxies.