The 16th data release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and full release of eBOSS spectra

Astrophysical Journal Supplement American Astronomical Society 249:1 (2020) 3

Authors:

Romina Ahumada, Carlos Allende Prieto, Andres Almeida, Martin Bureau, Michele Cappellari, Roger Davies, Eva-Maria Mueller, Rebecca Smethurst, SDSS-IV Collaboration SDSS-IV Collaboration

Abstract:

This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).

VLA imaging of the XMM-LSS/VIDEO deep field at 1–2 GHz

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 496:3 (2020) 3469-3481

Authors:

Ian Heywood, Matt Jarvis, Cl Hale, S Makhathini, Ja Peters, Mll Sebokolodi, Om Smirnov

Abstract:

Modern radio telescopes are routinely reaching depths where normal star-forming galaxies are the dominant observed population. Realizing the potential of radio as a tracer of star formation and black hole activity over cosmic time involves achieving such depths over representative volumes, with radio forming part of a larger multiwavelength campaign. In pursuit of this, we used the Karl G. Jansky Very Large Array (VLA) to image ∼5 deg2 of the VIDEO/XMM-LSS extragalactic deep field at 1–2 GHz. We achieve a median depth of 16 µJy beam−1 with an angular resolution of 4.5 arcsec. Comparisons with existing radio observations of XMM-LSS showcase the improved survey speed of the upgraded VLA: we cover 2.5 times the area and increase the depth by ∼20 per cent in 40 per cent of the time. Direction-dependent calibration and wide-field imaging were required to suppress the error patterns from off-axis sources of even modest brightness. We derive a catalogue containing 5762 sources from the final mosaic. Sub-band imaging provides in-band spectral indices for 3458 (60 per cent) sources, with the average spectrum becoming flatter than the canonical synchrotron slope below 1 mJy. Positional and flux density accuracy of the observations, and the differential source counts are in excellent agreement with those of existing measurements. A public release of the images and catalogue accompanies this article.

The C-Band All-Sky Survey: total intensity point-source detection over the northern sky

Monthly Notices of the Royal Astronomical Society Oxford University Press 496:2 (2020) 1941-1958

Authors:

Rdp Grumitt, Angela Taylor, Luke Jew, Michael E Jones, C Dickinson, A Barr, R Cepeda-Arroita, Hc Chiang, Se Harper, Hm Heilgendorff, JL Jonas, JP Leahy, Jamie Leech, TJ Pearson, MW Peel, ACS Readhead, J Sievers

Abstract:

We present a point-source detection algorithm that employs the second-order Spherical Mexican Hat wavelet filter (SMHW2), and use it on C-Band All-Sky Survey (C-BASS) northern intensity data to produce a catalogue of point sources. This catalogue allows us to cross-check the C-BASS flux-density scale against existing source surveys, and provides the basis for a source mask that will be used in subsequent C-BASS and cosmic microwave background (CMB) analyses. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point-source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a 4.76 GHz northern sky source catalogue in total intensity, containing 1784 sources and covering declinations δ ≥ −10°. The C-BASS catalogue is matched with the Green Bank 6 cm (GB6) and Parkes-MIT-NRAO (PMN) catalogues over their areas of common sky coverage. From this we estimate the 90 per cent completeness level to be approximately ⁠610 mJy, with a corresponding reliability of 98 per cent, when masking the brightest 30 per cent of the diffuse emission in the C-BASS northern sky map. We find the C-BASS and GB6 flux-density scales to be consistent with one another to within approximately 4 per cent.

Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 < z < 5

Monthly Notices of the Royal Astronomical Society Oxford University Press 496:1 (2020) 695-707

Authors:

Ac Carnall, S Walker, Rj McLure, Js Dunlop, Dj McLeod, F Cullen, V Wild, R Amorin, M Bolzonella, M Castellano, A Cimatti, O Cucciati, A Fontana, A Gargiulo, B Garilli, Mj Jarvis, L Pentericci, L Pozzetti, G Zamorani, A Calabro, Np Hathi, Am Koekemoer

Abstract:

We present a sample of 151 massive (M∗ > 1010 M·) quiescent galaxies at 2 < z < 5, based on a sophisticated Bayesian spectral energy distribution fitting analysis of the CANDELS UDS and GOODS-South fields. Our sample includes a robust sub-sample of 61 objects for which we confidently exclude low-redshift and star-forming solutions. We identify 10 robust objects at z > 3, of which 2 are at z > 4. We report formation redshifts, demonstrating that the oldest objects formed at z > 6; however, individual ages from our photometric data have significant uncertainties, typically ∼0.5 Gyr. We demonstrate that the UVJ colours of the quiescent population evolve with redshift at z > 3, becoming bluer and more similar to post-starburst galaxies at lower redshift. Based upon this, we construct a model for the time evolution of quiescent galaxy UVJ colours, concluding that the oldest objects are consistent with forming the bulk of their stellar mass at z ∼6-7 and quenching at z ∼5. We report spectroscopic redshifts for two of our objects at z = 3.440 and 3.396, which exhibit extremely weak Ly α emission in ultra-deep VANDELS spectra. We calculate star formation rates based on these line fluxes, finding that these galaxies are consistent with our quiescent selection criteria, provided their Ly α escape fractions are >3 and >10 per cent, respectively. We finally report that our highest redshift robust object exhibits a continuum break at λ ∼7000 Å in a spectrum from VUDS, consistent with our photometric redshift of z-\mathrmphot=4.72+0.06--0.04. If confirmed as quiescent, this object would be the highest redshift known quiescent galaxy. To obtain stronger constraints on the times of the earliest quenching events, high-SNR spectroscopy must be extended to z a 3 quiescent objects.

The Horizon Run 5 Cosmological Hydrodynamic Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

(2020)

Authors:

Jaehyun Lee, Jihye Shin, Owain N Snaith, Yonghwi Kim, C Gareth Few, Julien Devriendt, Yohan Dubois, Leah M Cox, Sungwook E Hong, Oh-Kyoung Kwon, Chan Park, Christophe Pichon, Juhan Kim, Brad K Gibson, Changbom Park