Methods for pixel domain correction of EB leakage

Physical Review D American Physical Society (APS) 100:2 (2019) 023538

Authors:

Hao Liu, James Creswell, Sebastian von Hausegger, Pavel Naselsky

Population estimates for electromagnetically distinguishable supermassive binary black holes

Astrophysical Journal American Astronomical Society 879:2 (2019) 110

Authors:

JH Krolik, M Volonteri, Y Dubois, Julien Devriendt

Abstract:

Distinguishing the photon output of an accreting supermassive black hole binary system from that of a single supermassive black hole accreting at the same rate is intrinsically difficult because the majority of the light emerges from near the innermost stable orbits of the black holes. However, there are two possible signals that can distinctively mark binaries, both arising from the gap formed in circumbinary accretion flows inside approximately twice the binary separation. One of these is a "notch" cut into the thermal spectra of these systems in the IR/optical/UV, the other a periodically varying excess hard X-ray luminosity whose period is of order the binary orbital period. Using data from detailed galaxy evolution simulations, we estimate the distribution function in mass, mass ratio, and accretion rate for accreting supermassive binary black holes (SMBBHs) as a function of redshift and then transform this distribution function into predicted source counts for these two potential signals. At flux levels >~10−13 erg cm−2 s−1, there may be ~O(102) such systems in the sky, mostly in the redshift range 0.5 <~ z <~ 1. Roughly 10% should have periods short enough (<~5 yr) to detect the X-ray modulation; this is also the period range accessible to Pulsar Timing Array observations.

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Nature Reviews Physics Springer Nature 1:7 (2019) 450-462

Authors:

Brant E Robertson, Manda Banerji, Sarah Brough, Roger L Davies, Henry C Ferguson, Ryan Hausen, Sugata Kaviraj, Jeffrey A Newman, Samuel J Schmidt, J Anthony Tyson, Risa H Wechsler

Black hole – Galaxy correlations in SIMBA

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:4 (2019) 5764-5780

Authors:

N Thomas, R Dave, D Angles-Alcazar, Matthew Jarvis

Abstract:

We examine the co-evolution of galaxies and supermassive black holes in the simba cosmological hydrodynamic simulation. simba grows black holes via gravitational torque-limited accretion from cold gas and Bondi accretion from hot gas, while feedback from black holes is modelled in radiative and jet modes depending on the Eddington ratio (fEdd). simba shows generally good agreement with local studies of black hole properties, such as the black hole mass-stellar velocity dispersion (MBH-σ) relation, the black hole accretion rate versus star formation rate (BHAR-SFR), and the black hole mass function. MBH-σ evolves such that galaxies at a given MBH have higher σ at higher redshift, consistent with no evolution in MBH-M∗. For MBH ≤ 108 M⊙, fEdd is anticorrelated with MBH since the BHAR is approximately independent of MBH, while at higher masses fEdd-MBH flattens and has a larger scatter. BHAR versus SFR is invariant with redshift, but fEdd drops steadily with time at a given MBH, such that all but the most massive black holes are accreting in a radiatively efficient mode at z ≥ 2. The black hole mass function amplitude decreases with redshift and is locally dominated by quiescent galaxies for MBH > 108 M⊙, but for z≥ 1 star-forming galaxies dominate at all MBH. The z = 0 fEdd distribution is roughly lognormal with a peak at fEdd ≤ 0.01 as observed, shifting to higher fEdd at higher redshifts. Finally, we study the dependence of black hole properties with H i content and find that the correlation between gas content and SFR is modulated by black hole properties, such that higher SFR galaxies at a given gas content have smaller black holes with higher fEdd.

Radio source extraction with ProFound

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:3 (2019) 3971-3989

Authors:

CL Hale, ASG Robotham, LJM Davies, Matthew Jarvis, SP Driver, I Heywood

Abstract:

In the current era of radio astronomy, continuum surveys observe a multitude of objects with complex morphologies and sizes, and are not limited to observing point sources. Typical radio source extraction software generates catalogues by using Gaussian components to form a model of the emission. This may not be well suited to complicated jet structures and extended emission, particularly in the era of interferometers with a high density of short baselines, which are sensitive to extended emission. In this paper, we investigate how the optically motivated source detection package ProFound (Robotham et al. 2018) may be used to model radio emission of both complicated and point-like radio sources. We use a combination of observations and simulations to investigate how ProFound compares to other source extractor packages used for radio surveys. We find that ProFound can accurately recover both the flux densities of simulated Gaussian sources as well as extended radio galaxies. ProFound can create models that trace the complicated nature of these extended galaxies, which we show is not necessarily the case with other source extraction software. Our work suggests that our knowledge of the emission from extended radio objects may be both over or under-estimated using traditional software. We suggest that ProFound offers a useful alternative to the fitting of Gaussian components for generating catalogues from current and future radio surveys. Furthermore, ProFound's multiwavelength capabilities will be useful in investigating radio sources in combination with multiwavelength data.