A three-phase amplification of the cosmic magnetic field in galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 479:3 (2018) 3343-3365

Authors:

S Martin-Alvarez, Julien EG Devriendt, Adrianne Slyz, R Teyssier

Abstract:

Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.

A three-phase amplification of the cosmic magnetic field in galaxies

(2018)

Authors:

Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, design and target catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 768-799

Authors:

LJM Davies, ASG Robotham, SP Driver, CP Lagos, L Cortese, E Mannering, C Foster, C Lidman, A Hashemizadeh, S Koushan, S O’Toole, IK Baldry, M Bilicki, J Bland-Hawthorn, MN Bremer, MJI Brown, JJ Bryant, B Catinella, SM Croom, MW Grootes, BW Holwerda, Matthew J Jarvis, N Maddox, M Meyer, AJ Moffett

Abstract:

The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ∼60 000 galaxies to Y < 21.2mag, over ∼6 deg2 in threewell-studied deep extragalactic fields (CosmicOrigins Survey field, COSMOS; Extended Chandra Deep Field South, ECDFS; and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS – all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of near-infrared colours and has been validated by visual inspection. To maximize our observing efficiency for faint targets, we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night’s observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

Discovery of a radio galaxy at z = 5.72

ArXiv 1806.01191 (2018)

Authors:

A Saxena, M Marinello, RA Overzier, PN Best, HJA Rottgering, KJ Duncan, I Prandoni, L Pentericci, M Magliocchetti, D Paris, F Cusano, F Marchi, HT Intema, GK Miley

HST grism confirmation of 16 structures at 1.4 < z < 2.8 from the Clusters Around Radio-Loud AGN (CARLA) survey

Astrophysical Journal Institute of Physics 859:1 (2018) 38

Authors:

G Noirot, D Stern, S Mei, D Wylezalek, EA Cooke, C De Breuck, A Galametz, NA Hatch, J Vernet, M Brodwin, P Eisenhardt, AH Gonzalez, Matthew Jarvis, A Rettura, N Seymour

Abstract:

We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 1.4.