The LoTSS view of radio AGN in the local Universe: the most massive galaxies are always switched on

Astronomy and Astrophysics EDP Sciences 622 (2019) A17

Authors:

J Sabater, PN Best, MJ Hardcastle, TW Shimwell, C Tasse, WL Williams, M Brüggen, RK Cochrane, JH Croston, F de Gasperin, KJ Duncan, G Gürkan, AP Mechev, Leah K Morabito, I Prandoni, HJA Röttgering, DJB Smith, JJ Harwood, B Mingo, S Mooney, A Saxena

Abstract:

This paper presents a study of the local radio source population, by cross-comparing the data from the first data release (DR1) of the LOFAR Two-Metre Sky Survey (LoTSS) with the Sloan Digital Sky Survey (SDSS) DR7 main galaxy spectroscopic sample. The LoTSS DR1 provides deep data (median rms noise of 71 μJy at 150 MHz) over 424 square degrees of sky, which is sufficient to detect 10 615 (32 per cent) of the SDSS galaxies over this sky area. An improved method to separate active galactic nuclei (AGN) accurately from sources with radio emission powered by star formation (SF) is developed and applied, leading to a sample of 2121 local (z < 0.3) radio AGN. The local 150 MHz luminosity function is derived for radio AGN and SF galaxies separately, and the good agreement with previous studies at 1.4 GHz suggests that the separation method presented is robust. The prevalence of radio AGN activity is confirmed to show a strong dependence on both stellar and black hole masses, remarkably reaching a fraction of 100 per cent of the most massive galaxies (> 1011 M⊙) displaying radio-AGN activity with L150 MHz ≥ 1021 W Hz−1; thus, the most massive galaxies are always switched on at some level. The results allow the full Eddington-scaled accretion rate distribution (a proxy for the duty cycle) to be probed for massive galaxies, and this accretion rate is found to peak at Lmech/LEdd ≈ 10−5. More than 50 per cent of the energy is released during the ≤2 per cent of the time spent at the highest accretion rates, Lmech/LEdd > 10−2.5. Stellar mass is shown to be a more important driver of radio-AGN activity than black hole mass, suggesting a possible connection between the fuelling gas and the surrounding halo. This result is in line with models in which these radio AGN are essential for maintaining the quenched state of galaxies at the centres of hot gas haloes.

The formation and evolution of low-surface-brightness galaxies

(2019)

Authors:

G Martin, S Kaviraj, C Laigle, JEG Devriendt, RA Jackson, S Peirani, Y Dubois, C Pichon, A Slyz

On the Observed Diversity of Star Formation Efficiencies in Giant Molecular Clouds

(2019)

Authors:

Kearn Grisdale, Oscar Agertz, Florent Renaud, Alessandro B Romeo, Julien Devriendt, Adrianne Slyz

The C-Band All-Sky Survey (C-BASS): digital backend for the northern survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 484:4 (2019) 5377-5388

Authors:

MA Stevenson, TJ Pearson, Michael Jones, CJ Copley, C Dickinson, JJ John, OG King, SJC Muchovej, Angela Taylor

Abstract:

The C-Band All-Sky Survey (C-BASS) is an all-sky full-polarization survey at a frequency of 5 GHz, designed to provide data complementary to the all-sky surveys of WMAP and Planck and future CMB B-mode polarization imaging surveys. We describe the design and performance of the digital backend used for the northern part of the survey. In particular, we describe the features that efficiently implement the demodulation and filtering required to suppress contaminating signals in the time-ordered data, and the capability for real-time correction of detector non-linearity and receiver balance.

The fifteenth data release of the Sloan Digital Sky Surveys: First release of MaNGA-derived quantities, data visualization tools, and Stellar Library

Astrophysical Journal Supplement Institute of Physics 240:23 (2019)

Authors:

DS Aguado, R Ahumada, A Almeida, Michele Cappellari, R Davies, Chris Lintott

Abstract:

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.