KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:4 (2017) 4894-4924

Authors:

Shahab Joudaki, C Blake, A Johnson, A Amon, M Asgari, A Choi, T Erben, K Glazebrook, J Harnois-Déraps, C Heymans, H Hildebrandt, H Hoekstra, D Klaes, K Kuijken, C Lidman, A Mead, Lance Miller, D Parkinson, GB Poole, P Schneider, M Viola, C Wolf

Abstract:

We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg$^2$ of imaging data by the Kilo Degree Survey (KiDS) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of $N$-body simulations. We methodically analyze different combinations of the observables, finding that galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude (by 30%, positive at $3.5\sigma$ in the fiducial data analysis), while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction (e.g. factor of two stronger matter density constraint in the fiducial analysis). The fully combined constraint on $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3} = 0.742 \pm 0.035$, which is an improvement by 20% compared to KiDS alone, corresponds to a $2.6\sigma$ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favored in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy, and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the $S_8$ constraint in the extended cosmology compared to KiDS alone.

Next Generation Virgo Cluster Survey. XXI. The weak lensing masses of the CFHTLS and NGVS RedGOLD galaxy clusters and calibration of the optical richness

Astrophysical Journal American Astronomical Society 848:2 (2017) 114

Authors:

C Parroni, S Mei, T Erben, LV Waerbeke, A Raichoor, J Ford, R Licitra, M Meneghetti, H Hildebrandt, Lance Miller, P Côté, G Covone, J-C Cuillandre, P-A Duc, L Ferrarese, SDJ Gwyn, TH Puzia

Abstract:

We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada–France–Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at $0.2\lt z\lt 0.5$, in the optical richness range $10\lt \lambda \lt 70$. This is the most comprehensive lensing study of a $\sim 100 \% $ complete and $\sim 80 \% $ pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass–richness relation. With this model, we obtain a mass–richness relation of $\mathrm{log}{M}_{200}/{M}_{\odot }\,=(14.46\pm 0.02)+(1.04\pm 0.09)\mathrm{log}(\lambda /40)$ (statistical uncertainties). This result is consistent with other published lensing mass–richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

Gas flows in the circumgalactic medium around simulated high-redshift galaxies

(2017)

Authors:

Peter Mitchell, Jeremy Blaizot, Julien Devriendt, Taysun Kimm, Leo Michel-Dansac, Joakim Rosdahl, Adrianne Slyz

Galaxy evolution in the metric of the Cosmic Web

(2017)

Authors:

K Kraljic, S Arnouts, C Pichon, C Laigle, S de la Torre, D Vibert, C Cadiou, Y Dubois, M Treyer, C Schimd, S Codis, V de Lapparent, J Devriendt, HS Hwang, D Le Borgne, N Malavasi, B Milliard, M Musso, D Pogosyan, M Alpaslan, J Bland-Hawthorn, AH Wright

Photometric redshifts for the next generation of deep radio continuum surveys – I. Template fitting

Monthly Notices of the Royal Astronomical Society Oxford University Press 473:2 (2017) 2655-2672

Authors:

KJ Duncan, MJI Brown, WL Williams, PN Best, V Buat, D Burgarella, Matthew J Jarvis, K Małek, SJ Oliver, HJA Röttgering, DJB Smith

Abstract:

We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ~4500 radio continuum sources with spectroscopic redshifts relative to those of ~63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties.We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.