Extreme value statistics of smooth random Gaussian fields

ArXiv 1102.5707 (2011)

Authors:

S Colombi, O Davis, J Devriendt, S Prunet, J Silk

Abstract:

We consider the Gumbel or extreme value statistics describing the distribution function p_G(x_max) of the maximum values of a random field x within patches of fixed size. We present, for smooth Gaussian random fields in two and three dimensions, an analytical estimate of p_G which is expected to hold in a regime where local maxima of the field are moderately high and weakly clustered. When the patch size becomes sufficiently large, the negative of the logarithm of the cumulative extreme value distribution is simply equal to the average of the Euler Characteristic of the field in the excursion x > x_max inside the patches. The Gumbel statistics therefore represents an interesting alternative probe of the genus as a test of non Gaussianity, e.g. in cosmic microwave background temperature maps or in three-dimensional galaxy catalogs. It can be approximated, except in the remote positive tail, by a negative Weibull type form, converging slowly to the expected Gumbel type form for infinitely large patch size. Convergence is facilitated when large scale correlations are weaker. We compare the analytic predictions to numerical experiments for the case of a scale-free Gaussian field in two dimensions, achieving impressive agreement between approximate theory and measurements. We also discuss the generalization of our formalism to non-Gaussian fields.

The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

(2011)

Authors:

Leila C Powell, Frederic Bournaud, Damien Chapon, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Spitzer imaging of Herschel-atlas gravitationally lensed submillimeter sources

Astrophysical Journal Letters 728:1 PART II (2011)

Authors:

R Hopwood, J Wardlow, A Cooray, AA Khostovan, S Kim, M Negrello, E Da Cunha, D Burgarella, I Aretxaga, R Auld, M Baes, E Barton, F Bertoldi, DG Bonfield, R Blundell, S Buttiglione, A Cava, DL Clements, J Cooke, H Dannerbauer, A Dariush, G De Zotti, J Dunlop, L Dunne, S Dye, S Eales, J Fritz, D Frayer, MA Gurwell, DH Hughes, E Ibar, RJ Ivison, MJ Jarvis, G Lagache, L Leeuw, S Maddox, MJ Michałlowski, A Omont, E Pascale, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, I Smail, DJB Smith, P Temi, MA Thompson, I Valtchanov, P Van Der Werf, A Verma, JD Vieira

Abstract:

We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 μm, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 μm data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with AV ∼ 4-5 and star formation rates of ∼ 100 M⊙ yr-1. They have low gas fractions and low dynamical masses compared with 850 μm selected galaxies. © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

Most massive halos with Gumbel Statistics

(2011)

Authors:

Olaf Davis, Julien Devriendt, Stéphane Colombi, Joe Silk, Christophe Pichon

Most massive halos with Gumbel Statistics

ArXiv 1101.2896 (2011)

Authors:

Olaf Davis, Julien Devriendt, Stéphane Colombi, Joe Silk, Christophe Pichon

Abstract:

We present an analytical calculation of the extreme value statistics for dark matter halos - that is, the probability distribution of the most massive halo within some region of the universe of specified shape and size. Our calculation makes use of the counts-in-cells formalism for the correlation functions, and the halo bias derived from the Sheth-Tormen mass function. We demonstrate the power of the method on spherical regions, comparing the results to measurements in a large cosmological dark matter simulation and achieving good agreement. Particularly good fits are obtained for the most likely value of the maximum mass and for the high-mass tail of the distribution, relevant in constraining cosmologies by observations of most massive clusters.