How Does Feedback Affect Milky Way Satellite Formation?

ArXiv 1101.2232 (2011)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt

Abstract:

We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.

How Does Feedback Affect Milky Way Satellite Formation?

(2011)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt

Green Bank Telescope Zpectrometer CO(1-0) observations of the strongly lensed submillimeter galaxies From the Herschel ATLAS

Astrophysical Journal Letters 726:2 PART II (2011)

Authors:

DT Frayer, AI Harris, AJ Baker, RJ Ivison, I Smail, M Negrello, R Maddalena, I Aretxaga, M Baes, M Birkinshaw, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, H Dannerbauer, A Dariush, G De Zotti, JS Dunlop, L Dunne, S Dye, S Eales, J Fritz, J Gonzalez-Nuevo, D Herranz, R Hopwood, DH Hughes, E Ibar, MJ Jarvis, G Lagache, LL Leeuw, M Lopez-Caniego, S Maddox, MJ Michałlowski, A Omont, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, DJB Smith, AM Swinbank, P Temi, MA Thompson, I Valtchanov, PP Van Der Werf, A Verma

Abstract:

The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate highredshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 ± 0.001 and z = 2.625 ± 0.001, and measure molecular gas masses of (1-3) ×1010M⊙, corrected for lens amplification and assuming a conversion factor of α = 0.8 M ⊙ (Kkm s-1 pc2)-1. We find typical L(IR)/L'(CO) ratios of 120 ±40 and 140±50L ⊙ (Kkm s-1 pc2)-1, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration. © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

3D photometric cosmic shear

Monthly Notices of the Royal Astronomical Society 413:4 (2011) 2923-2934

Authors:

TD Kitching, AF Heavens, L Miller

Abstract:

Here we present a number of improvements to weak lensing 3D power spectrum analysis, 3D cosmic shear, that uses the shape and redshift information of every galaxy to constrain cosmological parameters. We show how photometric redshift probability distributions for individual galaxies can be directly included in this statistic with no averaging. We also include the Limber approximation, considerably simplifying full 3D cosmic shear analysis, and we investigate its range of applicability. Finally we show the relationship between weak lensing tomography and the 3D cosmic shear field itself; the steps connecting them being the Limber approximation, a harmonic-space transform and a discretization in wavenumber. Each method has its advantages; 3D cosmic shear analysis allows straightforward inclusion of all relevant modes, thus ensuring minimum error bars, and direct control of the range of physical wavenumbers probed, to avoid the uncertain highly non-linear regime. On the other hand, tomography is more convenient for checking systematics through direct investigation of the redshift dependence of the signal. Finally, for tomography, we suggest that the angular modes probed should be redshift dependent, to recover some of the 3D advantages. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

A broad-band X-ray view of the warm absorber in radio-quiet quasar MR2251-178

Monthly Notices of the Royal Astronomical Society 414:4 (2011) 3307-3321

Authors:

J Gofford, JN Reeves, TJ Turner, F Tombesi, V Braito, D Porquet, L Miller, SB Kraemer, Y Fukazawa

Abstract:

We present the analysis of a new broad-band X-ray spectrum (0.6-180.0keV) of the radio-quiet quasar MR2251-178 which uses both Suzaku and Swift/Burst Alert Telescope data. In accordance with previous observations, we find that the general continuum can be well described by a power law with Γ= 1.6 and an apparent soft excess below 1keV. Warm absorption is clearly present, and absorption lines due to the Feunresolved transition array, FeL (Fexxiii-xxiv), Sxv and Sxvi are detected below 3keV. At higher energies, FeK absorption from Fexxv-xxvi is detected and a relatively weak (EW = 25+12-8eV) narrow FeKα emission line is observed (E= 6.44 ± 0.04keV) which is well modelled by the presence of a mildly ionized (ξ≲ 30) reflection component with a low reflection fraction (R < 0.2). At least five ionized absorption components with 1020≲NH≲ 1023 cm-2 and 0 ≲ logξ/ergcms-1≲ 4 are required to achieve an adequate spectral fit. Alternatively, we show that the continuum can also be fit if a Γ∼ 2.0 power law is absorbed by a column of NH∼ 1023cm-2 which covers ∼30 per cent of the source flux. Independent of which continuum model is adopted, the FeL and Fexxv Heα lines are well fit by a single absorber outflowing with vout∼ 0.14c. Such an outflow/disc-wind is likely to be substantially clumped (b∼ 10-3) in order to not vastly exceed the likely accretion rate of the source. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.