The SAURON project – XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 417:3 (2011) 1787-1816

Authors:

J Falcón-Barroso, G van de Ven, RF Peletier, M Bureau, H Jeong, R Bacon, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, D Krajnović, H Kuntschner, RM McDermid, M Sarzi, KL Shapiro, RCE van den Bosch, G van der Wolk, A Weijmans, S Yi

Herschel-ATLAS Galaxy Counts and High-redshift Luminosity Functions: The Formation of Massive Early-type Galaxies

\apj 742 (2011) 24-24

Authors:

A Lapi, J González-Nuevo, L Fan, A Bressan, G De Zotti, L Danese, M Negrello, L Dunne, S Eales, S Maddox, R Auld, M Baes, DG Bonfield, S Buttiglione, A Cava, DL Clements, A Cooray, A Dariush, S Dye, J Fritz, D Herranz, R Hopwood, E Ibar, R Ivison, MJ Jarvis, S Kaviraj, M López-Caniego, M Massardi, MJ Micha lowski, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Serjeant, DJB Smith, P Temi, J Wardlow, P van der Werf

The environment and characteristics of low-redshift galaxies detected by the Herschel-ATLAS

\mnras 418 (2011) 64-73-64-73

Authors:

A Dariush, L Cortese, S Eales, E Pascale, MWL Smith, L Dunne, S Dye, D Scott, R Auld, M Baes, J Bland-Hawthorn, S Buttiglione, A Cava, DL Clements, A Cooray, G Dezotti, S Driver, J Fritz, HL Gomez, A Hopkins, R Hopwood, RJ Ivison, MJ Jarvis, DH Jones, L Kelvin, HG Khosroshahi, J Liske, J Loveday, S Maddox, BF Madore, MJ Micha lowski, P Norberg, S Phillipps, M Pohlen, CC Popescu, M Prescott, E Rigby, A Robotham, G Rodighiero, M Seibert, DJB Smith, P Temi, RJ Tuffs, PP van der Werf

The impact of high spatial frequency atmospheric distortions on weak lensing measurements

ArXiv 1110.4913 (2011)

Authors:

Catherine Heymans, Barnaby Rowe, Henk Hoekstra, Lance Miller, Thomas Erben, Thomas Kitching, Ludovic Van Waerbeke

Abstract:

High precision cosmology with weak gravitational lensing requires a precise measure of the Point Spread Function across the imaging data where the accuracy to which high spatial frequency variation can be modelled is limited by the stellar number density across the field. We analyse dense stellar fields imaged at the Canada-France-Hawaii Telescope to quantify the degree of high spatial frequency variation in ground-based imaging Point Spread Functions and compare our results to models of atmospheric turbulence. The data shows an anisotropic turbulence pattern with an orientation independent of the wind direction and wind speed. We find the amplitude of the high spatial frequencies to decrease with increasing exposure time as $t^{-1/2}$, and find a negligibly small atmospheric contribution to the Point Spread Function ellipticity variation for exposure times $t>180$ seconds. For future surveys analysing shorter exposure data, this anisotropic turbulence will need to be taken into account as the amplitude of the correlated atmospheric distortions becomes comparable to a cosmological lensing signal on scales less than $\sim 10$ arcminutes. This effect could be mitigated, however, by correlating galaxy shear measured on exposures imaged with a time separation greater than 50 seconds, for which we find the spatial turbulence patterns to be uncorrelated.

Euclid Definition Study Report

ArXiv 1110.3193 (2011)

Authors:

R Laureijs, J Amiaux, S Arduini, J-L Auguères, J Brinchmann, R Cole, M Cropper, C Dabin, L Duvet, A Ealet, B Garilli, P Gondoin, L Guzzo, J Hoar, H Hoekstra, R Holmes, T Kitching, T Maciaszek, Y Mellier, F Pasian, W Percival, J Rhodes, G Saavedra Criado, M Sauvage, R Scaramella, L Valenziano, S Warren, R Bender, F Castander, A Cimatti, O Le Fèvre, H Kurki-Suonio, M Levi, P Lilje, G Meylan, R Nichol, K Pedersen, V Popa, R Rebolo Lopez, H-W Rix, H Rottgering, W Zeilinger, F Grupp, P Hudelot, R Massey, M Meneghetti, L Miller, S Paltani, S Paulin-Henriksson, S Pires, C Saxton, T Schrabback, G Seidel, J Walsh, N Aghanim, L Amendola, J Bartlett, C Baccigalupi, J-P Beaulieu, K Benabed, J-G Cuby, D Elbaz, P Fosalba, G Gavazzi, A Helmi, I Hook, M Irwin, J-P Kneib, M Kunz, F Mannucci, L Moscardini, C Tao, R Teyssier, J Weller, G Zamorani, MR Zapatero Osorio, O Boulade, JJ Foumond, A Di Giorgio, P Guttridge, A James, M Kemp, J Martignac, A Spencer, D Walton, T Blümchen, C Bonoli, F Bortoletto, C Cerna, L Corcione, C Fabron, K Jahnke, S Ligori, F Madrid, L Martin, G Morgante, T Pamplona, E Prieto, M Riva, R Toledo, M Trifoglio, F Zerbi, F Abdalla, M Douspis, C Grenet, S Borgani, R Bouwens, F Courbin, J-M Delouis, P Dubath, A Fontana, M Frailis, A Grazian, J Koppenhöfer, O Mansutti, M Melchior, M Mignoli, J Mohr, C Neissner, K Noddle, M Poncet, M Scodeggio, S Serrano, N Shane, J-L Starck, C Surace, A Taylor, G Verdoes-Kleijn, C Vuerli, OR Williams, A Zacchei, B Altieri, I Escudero Sanz, R Kohley, T Oosterbroek, P Astier, D Bacon, S Bardelli, C Baugh, F Bellagamba, C Benoist, D Bianchi, A Biviano, E Branchini, C Carbone, V Cardone, D Clements, S Colombi, C Conselice, G Cresci, N Deacon, J Dunlop, C Fedeli, F Fontanot, P Franzetti, C Giocoli, J Garcia-Bellido, J Gow, A Heavens, P Hewett, C Heymans, A Holland, Z Huang, O Ilbert, B Joachimi, E Jennins, E Kerins, A Kiessling, D Kirk, R Kotak, O Krause, O Lahav, F van Leeuwen, J Lesgourgues, M Lombardi, M Magliocchetti, K Maguire, E Majerotto, R Maoli, F Marulli, S Maurogordato, H McCracken, R McLure, A Melchiorri, A Merson, M Moresco, M Nonino, P Norberg, J Peacock, R Pello, M Penny, V Pettorino, C Di Porto, L Pozzetti, C Quercellini, M Radovich, A Rassat, N Roche, S Ronayette, E Rossetti, B Sartoris, P Schneider, E Semboloni, S Serjeant, F Simpson, C Skordis, G Smadja, S Smartt, P Spano, S Spiro, M Sullivan, A Tilquin, R Trotta, L Verde, Y Wang, G Williger, G Zhao, J Zoubian, E Zucca

Abstract:

Euclid is a space-based survey mission from the European Space Agency designed to understand the origin of the Universe's accelerating expansion. It will use cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of structure formation. The mission is optimised for two independent primary cosmological probes: Weak gravitational Lensing (WL) and Baryonic Acoustic Oscillations (BAO). The Euclid payload consists of a 1.2 m Korsch telescope designed to provide a large field of view. It carries two instruments with a common field-of-view of ~0.54 deg2: the visual imager (VIS) and the near infrared instrument (NISP) which contains a slitless spectrometer and a three bands photometer. The Euclid wide survey will cover 15,000 deg2 of the extragalactic sky and is complemented by two 20 deg2 deep fields. For WL, Euclid measures the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+I+Z band (550-920 nm). The photometric redshifts for these galaxies reach a precision of dz/(1+z) < 0.05. They are derived from three additional Euclid NIR bands (Y, J, H in the range 0.92-2.0 micron), complemented by ground based photometry in visible bands derived from public data or through engaged collaborations. The BAO are determined from a spectroscopic survey with a redshift accuracy dz/(1+z) =0.001. The slitless spectrometer, with spectral resolution ~250, predominantly detects Ha emission line galaxies. Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme, with a foreseen launch date in 2019. This report (also known as the Euclid Red Book) describes the outcome of the Phase A study.