Recent progress on the KMOS multi-object integral-field spectrograph for ESO VLT
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)
Abstract:
KMOS is a near-infrared multi-object integral-field spectrometer which is one of a suite of second-generation instruments under construction for the VLT. The instrument is being built by a consortium of UK and German institutes working in partnership with ESO and is now in the manufacture, integration and test phase. In this paper we present an overview of recent progress with the design and build of KMOS and present the first results from the subsystem test and integration. © 2010 Copyright SPIE - The International Society for Optical Engineering.The Oxford SWIFT spectrograph: First commissioning and on-sky results
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)
Abstract:
The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/Δλ)∼4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235″;, 0.16″, and 0.08″ per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact. © 2010 Copyright SPIE - The International Society for Optical Engineering.The detection of a population of submillimeter-bright, strongly lensed galaxies.
Science 330:6005 (2010) 800-804
Abstract:
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.The detection of a population of submillimeter-bright, strongly lensed galaxies
Science 330:6005 (2010) 800-804
Abstract:
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.Herschel-ATLAS: the far-infrared-radio correlation at z \lt 0.5
\mnras 409 (2010) 92-101-92-101