Herschel -ATLAS: Extragalactic number counts from 250 to 500 microns
Astronomy and Astrophysics 518:4 (2010)
Abstract:
Aims. The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 μm when completed, reaching flux limits (5σ) from 32 to 145 mJy. We here present galaxy number counts obtained for SPIRE observations of the first ∼14 sq. deg. observed at 250, 350 and 500 μm. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200 mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift. © 2010 ESO.Herschel -ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754
Astronomy and Astrophysics 518:8 (2010)
Abstract:
We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation. © 2010 ESO.Weighing black holes using open-loop focus corrections for LGS-AO observations of galaxy nuclei at Gemini Observatory
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)
Abstract:
We present observations of early-type galaxies with laser guide star adaptive optics (LGS AO) obtained at Gemini North telescope using the NIFS integral field unit (IFU). We employ an innovative technique where the focus compensation due to the changing distance to the sodium layer is made 'open loop', allowing the extended galaxy nucleus to be used only for tip-tilt correction. The purpose of these observations is to determine high spatial resolution stellar kinematics within the nuclei of these galaxies to determine the masses of the super-massive black holes. The resulting data have spatial resolution of 0.2" FWHM or better. This is sufficient to positively constrain the presence of the central black hole in even low-mass early-type galaxies, suggesting that larger samples of such objects could be observed with this technique in the future. The open-loop focus correction technique is a supported queue-observing mode at Gemini, significantly extending the sky coverage in particular for faint, extended guide sources. We also provide preliminary results from tests combining tip/tilt correction from the Gemini peripheral guider with on-axis LGS. The current test system demonstrates feasibility of this mode, providing about a factor 2-3 improvement over natural seeing. With planned upgrades to the peripheral wave-front sensor, we hope to provide close to 100% sky coverage with low Strehl corrections, or 'improved seeing', significantly increasing flux concentration for deep field and extended object studies. © 2010 SPIE.Herschel ATLAS: The cosmic star formation history of quasar host galaxies
Astronomy and Astrophysics 518:8 (2010)
Abstract:
We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 < z < 6 and absolute I-band magnitudes -22 > IAB > -32 We use the science demonstration observations of the first ∼ 16 deg2 from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at > 5σ at 250, 350 and 500 μ m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > IAB > -24 have a comoving star formation rate (derived from 100 μ m rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with IAB < -26 have a maximum contribution to the star formation density at z ∼ 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)2.3±0.7 at z < 2, but the evolution at higher luminosities is much faster reaching (1 + z) 10±1 at -26 > IAB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation. © 2010 ESO.Infrared-correlated 31-GHz radio emission from Orion East
\mnras 407 (2010) 2223-2229