Wide-field 1-2 GHz research on galaxy evolution – synergies with multi-wavelength surveys
ArXiv e-prints (2009)
Stellar populations of early-type galaxies in the ATLAS3D sample
AIP Conference Proceedings 1111 (2009) 111-114
Abstract:
ATLAS3D is a multi-wavelength, volume-limited survey of 263 morphologicallyselected early-type galaxies within a distance of 42 Mpc and complete to MK ≤ -21.5. Here we present the ATLAS3D project and our first results on the stellar populations of galaxies in the ATLAS3Dsample based on SAURON integral-field spectroscopy. We show relations between integrated line-strength indices and stellar velocity dispersion o in the range 55 ≤ Σ(km/s) ≤ 350. We derive simple-stellar-population-equivalent age, metallicity and α/Fe abundance ratio and discuss their relation to stellar velocity dispersion, environment and galaxy internal kinematics. These preliminary results indicate that slow rotators tend to be older and have less variation in age than fast rotators. We also find that galaxies in lower density environments are on average younger than those in denser environments, as found by other authors. © 2009 American Institute of Physics.Influence of AGN jets on the magnetized ICM
ArXiv 0905.3345 (2009)
Abstract:
Galaxy clusters are the largest structures for which there is observational evidence of a magnetised medium. Central cores seem to host strong magnetic fields ranging from a few 0.1 microG up to several 10 microG in cooling flow clusters. Numerous clusters harbor central powerful AGN which are thought to prevent cooling flows in some clusters. The influence of such feedback on the magnetic field remains unclear: does the AGN-induced turbulence compensate the loss of magnetic amplification within a cool core? And how is this turbulence sustained over several Gyr? Using high resolution magneto-hydrodynamical simulations of the self-regulation of a radiative cooling cluster, we study for the first time the evolution of the magnetic field within the central core in the presence of a powerful AGN jet. It appears that the jet-induced turbulence strongly amplifies the magnetic amplitude in the core beyond the degree to which it would be amplified by pure compression in the gravitational field of the cluster. The AGN produces a non-cooling core and increases the magnetic field amplitude in good agreement with microG field observations.Discovery of a Giant Lyα Emitter Near the Reionization Epoch
\apj 696 (2009) 1164-1175-1164-1175