The environments of z 1 active galactic nuclei at 3.6μm

\mnras 405 (2010) 347-358-347-358

Authors:

JT Falder, JA Stevens, MJ Jarvis, MJ Hardcastle, M Lacy, RJ McLure, E Hatziminaoglou, MJ Page, GT Richards

Jet-regulated cooling catastrophe

ArXiv 1004.1851 (2010)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Abstract:

We present the first implementation of Active Galactic Nuclei (AGN) feedback in the form of momentum driven jets in an Adaptive Mesh Refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion onto Super Massive Black Holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of BH growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z>2), significantly pre-heating proto-cluster halos. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas onto the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor 3 compared to the no AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the beta model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than Universal baryon fractions which seem to be commonplace in observed galaxy clusters.

Jet-regulated cooling catastrophe

(2010)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Identifying the progenitor set of present-day early-type galaxies: a view from the standard model

(2010)

Authors:

Sugata Kaviraj, Julien Devriendt, Ignacio Ferreras, Sukyoung Yi, Joseph Silk

Identifying the progenitor set of present-day early-type galaxies: a view from the standard model

ArXiv 1001.2212 (2010)

Authors:

Sugata Kaviraj, Julien Devriendt, Ignacio Ferreras, Sukyoung Yi, Joseph Silk

Abstract:

We present a comprehensive theoretical study, using a semi-analytical model within the standard LCDM framework, of the photometric properties of the progenitors of present-day early-type galaxies in the redshift range 00.7) spirals have 75-95% chance of being an early-type progenitor, while the corresponding probability for large blue spirals (M_B<-21.5, B-V<0.7) is 50-75%. The prescriptions developed here can be used to address, from the perspective of the standard model, the issue of `progenitor bias', whereby the exclusion of late-type progenitors in observational studies can lead to inaccurate conclusions regarding the evolution of the early-type population over cosmic time. (abridged)