Spectral age distribution for radio-loud active galaxies in the XMM-LSS field
Abstract:
Jets of energetic particles, as seen in FR type-I and FR type-II sources, ejected from the centre of radio-loud AGN affect the sources surrounding the intracluster medium/intergalactic medium. Placing constraints on the age of such sources is important in order to measure the jet powers and determine the effects on feedback. To evaluate the age of these sources using spectral age models, we require high-resolution multiwavelength data. The new sensitive and high-resolution MIGHTEE survey of the XMM-LSS field, along with data from the Low Frequency Array (LOFAR) and the Giant Metrewave Radio Telescope (GMRT) provide data taken at different frequencies with similar resolution, which enables us to determine the spectral age distribution for radio-loud AGN in the survey field. In this study, we present a sample of 28 radio galaxies with their best-fitting spectral age distribution analysed using the Jaffe–Perola (JP) model on a pixel-by-pixel basis. Fits are generally good, and objects in our sample show maximum ages within the range of 2.8 to 115 Myr with a median of 8.71 Myr. High-resolution maps over a range of frequencies are required to observe detailed age distributions for small sources, and high-sensitivity maps will be needed in order to observe fainter extended emission. We do not observe any correlation between the total physical size of the sources and their age, and we speculate that both dynamical models and the approach to spectral age analysis may need some modification to account for our observations.
Inferring dark matter halo properties for H i-selected galaxies
Abstract:
We set constraints on the dark matter halo mass and concentration of ∼22 000 individual galaxies visible both in H I (from the ALFALFA survey) and optical light (from the Sloan Digital Sky Survey). This is achieved by combining two Bayesian models, one for the H I line width as a function of the stellar and neutral hydrogen mass distributions in a galaxy using kinematic modelling, and the other for the galaxy’s total baryonic mass using the technique of inverse subhalo abundance matching. We hence quantify the constraining power on halo properties of spectroscopic and photometric observations, and assess their consistency. We find good agreement between the two sets of posteriors, although there is a sizeable population of low-line width galaxies that favour significantly smaller dynamical masses than expected from abundance matching (especially for cuspy halo profiles). Abundance matching provides significantly more stringent bounds on halo properties than the H I line width, even with a mass–concentration prior included, although combining the two provides a mean gain of 40 per cent for the sample when fitting an NFW profile. We also use our kinematic posteriors to construct a baryonic mass–halo mass relation, which we find to be near power law, and with a somewhat shallower slope than expected from abundance matching. Our method demonstrates the potential of combining photometric and spectroscopic observations to precisely map out the dark matter distribution at the galaxy scale using upcoming H I surveys such as the SKA.The total rest-frame UV luminosity function from 3 < z < 5: a simultaneous study of AGN and galaxies from −28 < MUV < −16
Abstract:
We present measurements of the rest-frame ultraviolet luminosity function (LF) at redshifts z = 3, z = 4, and z = 5, using 96894, 38655, and 7571 sources, respectively, to map the transition between active galactic nuclei (AGN) and galaxy-dominated ultraviolet emission shortly after the epoch of reionization (EoR). Sources are selected using a comprehensive photometric redshift approach, using 10 deg2 of deep extragalactic legacy fields covered by both HSC and VISTA. The use of template fitting spanning a wavelength range of 0.3–2.4 μm achieves 80–90 per cent completeness, much higher than the classical colour–colour cut methodology. The measured LF encompasses −26 < MUV < −19.25. This is further extended to −28.5 < MUV < −16 using complementary results from other studies, allowing for the simultaneous fitting of the combined AGN and galaxy LF. We find that there are fewer UV luminous galaxies (MUV < −22) at z ∼ 3 than z ∼ 4, indicative of an onset of widespread quenching alongside dust obscuration, and that the evolution of the AGN LF is very rapid, with their number density rising by around two orders of magnitude from 3 < z < 6. It remains difficult to determine if a double power law functional form is preferred over the Schechter function to describe the galaxy UV LF. Estimating the hydrogen ionizing photon budget from our UV LFs, we find that AGN can contribute to, but cannot solely maintain, the reionization of the Universe at z = 3–5. However, the rapidly evolving AGN LF strongly disfavours a significant contribution within the EoR.