KiDS-Legacy calibration: Unifying shear and redshift calibration with the SKiLLS multi-band image simulations

Astronomy & Astrophysics EDP Sciences 670 (2023) a100

Authors:

Shun-Sheng Li, Konrad Kuijken, Henk Hoekstra, Lance Miller, Catherine Heymans, Hendrik Hildebrandt, Jan Luca van den Busch, Angus H Wright, Mijin Yoon, Maciej Bilicki, Matías Bravo, Claudia del P. Lagos

Bringing Stellar Evolution & Feedback Together: Summary of proposals from the Lorentz Center Workshop, 2022

ArXiv 2301.13611 (2023)

Authors:

Sam Geen, Poojan Agrawal, Paul A Crowther, BW Keller, Alex de Koter, Zsolt Keszthelyi, Freeke van de Voort, Ahmad A Ali, Frank Backs, Lars Bonne, Vittoria Brugaletta, Annelotte Derkink, Sylvia Ekström, Yvonne A Fichtner, Luca Grassitelli, Ylva Götberg, Erin R Higgins, Eva Laplace, Kong You Liow, Marta Lorenzo, Anna F McLeod, Georges Meynet, Megan Newsome, G André Oliva, Varsha Ramachandran, Martin P Rey, Steven Rieder, Emilio Romano-Díaz, Gautham Sabhahit, Andreas AC Sander, Rafia Sarwar, Hanno Stinshoff, Mitchel Stoop, Dorottya Szécsi, Maxime Trebitsch, Jorick S Vink, Ethan Winch

Core-collapse supernovae in the Dark Energy Survey: luminosity functions and host galaxy demographics

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 520:1 (2023) 684-701

Authors:

M Grayling, CP Gutiérrez, M Sullivan, P Wiseman, M Vincenzi, L Galbany, A Möller, D Brout, TM Davis, C Frohmaier, O Graur, L Kelsey, C Lidman, B Popovic, M Smith, M Toy, BE Tucker, Z Zontos, TMC Abbott, M Aguena, S Allam, F Andrade-Oliveira, J Annis, J Asorey, D Bacon, E Bertin, S Bocquet, D Brooks, A Carnero Rosell, D Carollo, M Carrasco Kind, J Carretero, M Costanzi, LN da Costa, MES Pereira, J De Vicente, S Desai, HT Diehl, P Doel, S Everett, I Ferrero, D Friedel, J Frieman, J García-Bellido, M Gatti, D Gruen, J Gschwend, G Gutierrez, SR Hinton, DL Hollowood, K Honscheid, DJ James, K Kuehn, N Kuropatkin, GF Lewis, U Malik, M March, F Menanteau, R Miquel, R Morgan, RLC Ogando, A Palmese, F Paz-Chinchón, A Pieres, AA Plazas Malagón, M Rodriguez-Monroy, AK Romer, A Roodman, E Sanchez, V Scarpine, I Sevilla-Noarbe, E Suchyta, G Tarle, C To, DL Tucker, TN Varga, DES Collaboration

The star formation history in the last 10 billion years from CIB cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:2 (2023) 1895-1912

Authors:

Baptist Jego, Jaime Ruiz-Zapatero, Carlos Garcia-Garcia, Nick Koukoufilippas, David Alonso

Abstract:

The Cosmic Infrared Background (CIB) traces the emission of star-forming galaxies throughout all cosmic epochs. Breaking down the contribution from galaxies at different redshifts to the observed CIB maps would allow us to probe the history of star formation. In this paper, we cross-correlate maps of the CIB with galaxy samples covering the range 푧 . 2 to measure the bias-weighted star-formation rate (SFR) density h푏휌SFRi as a function of time in a model independent way. This quantity is complementary to direct measurements of the SFR density 휌SFR, giving a higher weight to more massive haloes, and thus provides additional information to constrain the physical properties of star formation. Using cross-correlations of the CIB with galaxies from the DESI Legacy Survey and the extended Baryon Oscillation Spectroscopic Survey, we obtain high signal-to-noise ratio measurements of h푏휌SFRi, which we then use to place constraints on halo-based models of the star-formation history. We fit halo-based SFR models to our data and compare the recovered 휌SFR with direct measurements of this quantity. We find a qualitatively good agreement between both independent datasets, although the details depend on the specific halo model assumed. This constitutes a useful robustness test for the physical interpretation of the CIB, and reinforces the role of CIB maps as valuable astrophysical probes of the large-scale structure. We report our measurements of h푏휌SFRi as well as a thorough account of their statistical uncertainties, which can be used to constrain star-formation models in combination with other data.

Intrinsic correlations of galaxy sizes in a hydrodynamical cosmological simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:1 (2023) 1541-1566

Authors:

Harry Johnston, Dana Sophia Westbeek, Sjoerd Weide, Nora Elisa Chisari, Yohan Dubois, Julien Devriendt, Christophe Pichon

Abstract:

Residuals between measured galactic radii and those predicted by the Fundamental Plane (FP) are possible tracers of weak lensing magnification. However, observations have shown these to be systematically correlated with the large-scale structure. We use the Horizon-AGN hydrodynamical cosmological simulation to analyse these intrinsic size correlations (ISCs) for both elliptical (early-type) and spiral (late-type) galaxies at z = 0.06. We fit separate FPs to each sample, finding similarly distributed radius residuals, λ, in each case. We find persistent λλ correlations over three-dimensional separations 0.5–17h−1 Mpc in the case of spiral galaxies, at >3σ significance. When relaxing a mass-selection, applied for better agreement with galaxy clustering constraints, the spiral λλ detection strengthens to 9σ; we detect a 5σ density-λ correlation; and we observe intrinsically-large spirals to cluster more strongly than small spirals over scales ≲10h−1 Mpc at >5σ significance. Conversely, and in agreement with the literature, we observe lower-mass, intrinsically-small ellipticals to cluster more strongly than their large counterparts over scales 0.5–17h−1 Mpc at >5σ significance. We model λλ correlations using a phenomenological non-linear size model, and predict the level of contamination for cosmic convergence analyses. We find the systematic contribution to be of similar order to, or dominant over the cosmological signal. We make a mock measurement of an intrinsic, systematic contribution to the projected surface mass density Σ(r), and find statistically significant low-amplitude, positive (negative) contributions from lower-mass spirals (ellipticals), which may be of concern for large-scale (⁠≳7h−1 Mpc) measurements.