Probing Cosmic Dawn: Modelling the Assembly History, SEDs, and Dust Content of Selected $z\sim9$ Galaxies
MNRAS
Abstract:
The presence of spectroscopically confirmed Balmer breaks in galaxy spectral energy distributions (SEDs) at $z>9$ provides one of the best probes of the assembly history of the first generations of stars in our Universe. Recent observations of the gravitationally lensed source, MACS 1149_JD1 (JD1), indicate that significant amounts of star formation likely occurred at redshifts as high as $z\simeq15$. The inferred stellar mass, dust mass, and assembly history of JD1, or any other galaxy at these redshifts that exhibits a strong Balmer break, can provide a strong test of our best theoretical models from high-resolution cosmological simulations. In this work, we present the results from a cosmological radiation-hydrodynamics simulation of the region surrounding a massive Lyman-break galaxy. For two of our most massive systems, we show that dust preferentially resides in the vicinity of the young stars thereby increasing the strength of the measured Balmer break such that the simulated SEDs are consistent with the photometry of JD1 and two other $z>9$ systems (GN-z10-3 and GN-z9-1) that have proposed Balmer breaks at high redshift. We find strong variations in the shape and luminosity of the SEDs of galaxies with nearly identical stellar and halo masses, indicating the importance of morphology, assembly history, and dust distribution in making inferences on the properties of individual galaxies at high redshifts. Our results stress the importance that dust may play in modulating the observable properties of galaxies, even at the extreme redshifts of $z>9$.Star-Gas Misalignment in Galaxies: II. Origins Found from the Horizon-AGN Simulation
Abstract:
There have been many studies aiming to reveal the origins of the star-gas misalignment found in galaxies, but there still is a lack of understanding of the contribution from each formation channel candidate. We aim to answer the question by investigating the misaligned galaxies in Horizon-AGN, a cosmological large-volume simulation of galaxy formation. There are 27,903 galaxies of stellar mass $M_* > 10^{10} M_\odot$ in our sample, of which 5,984 are in a group of the halo mass of $M_{200} > 10^{12} M_\odot$. We have identified four main formation channels of misalignment and quantified their level of contribution: mergers (35%), interaction with nearby galaxies (23%), interaction with dense environments or their central galaxies (21%), and secular evolution including smooth accretion from neighboring filaments (21%). We found in the simulation that the gas, rather than stars, is typically more vulnerable to dynamical disturbances; hence, misalignment formation is mainly due to the change in the rotational axis of the gas rather than stars, regardless of the origin. We have also inspected the lifetime (duration) of the misalignment. The decay timescale of the misalignment shows a strong anti-correlation with the kinematic morphology ($V/{\sigma}$) and the cold gas fraction of the galaxy. The misalignment has a longer lifetime in denser regions, which is linked with the environmental impact on the host galaxy. There is a substantial difference in the length of the misalignment lifetime depending on the origin, and it can be explained by the magnitude of the initial position angle offset and the physical properties of the galaxies.Star-gas misalignment in galaxies: I. The properties of galaxies from the Horizon-AGN simulation and comparisons to SAMI
Abstract:
Recent integral field spectroscopy observations have found that about 11\% of galaxies show star-gas misalignment. The misalignment possibly results from external effects such as gas accretion, interaction with other objects, and other environmental effects, hence providing clues to these effects. We explore the properties of misaligned galaxies using Horizon-AGN, a large-volume cosmological simulation, and compare the result with the result of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. Horizon-AGN can match the overall misalignment fraction and reproduces the distribution of misalignment angles found by observations surprisingly closely. The misalignment fraction is found to be highly correlated with galaxy morphology both in observations and in the simulation: early-type galaxies are substantially more frequently misaligned than late-type galaxies. The gas fraction is another important factor associated with misalignment in the sense that misalignment increases with decreasing gas fraction. However, there is a significant discrepancy between the SAMI and Horizon-AGN data in the misalignment fraction for the galaxies in dense (cluster) environments. We discuss possible origins of misalignment and disagreement.The FIR/submm window on galaxy formation
The Birth of Galaxies