The SAMI Galaxy Survey: the link between [α/Fe] and kinematic morphology

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:4 (2022) 5076-5087

Authors:

Peter J Watson, Roger L Davies, Jesse van de Sande, Sarah Brough, Scott M Croom, Francesco D'Eugenio, Karl Glazebrook, Brent Groves, Angel R Lopez-Sanchez, Nicholas Scott, Sam P Vaughan, C Jakob Walcher, Joss Bland-Hawthorn, Julia J Bryant, Michael Goodwin, Jon S Lawrence, Nuria PF Lorente, Matt S Owers, Samuel Richards

Abstract:

We explore a sample of 1492 galaxies with measurements of the mean stellar population properties and the spin parameter proxy, λRe⁠, drawn from the SAMI Galaxy Survey. We fit a global [α/Fe]–σ relation, finding that [α/Fe]=(0.395±0.010)log10(σ)−(0.627±0.002)⁠. We observe an anti-correlation between the residuals Δ[α/Fe] and the inclination-corrected λeoRe⁠, which can be expressed as Δ[α/Fe]=(−0.057±0.008)λeoRe+(0.020±0.003)⁠. The anti-correlation appears to be driven by star-forming galaxies, with a gradient of Δ[α/Fe]∼(−0.121±0.015)λeoRe⁠, although a weak relationship persists for the subsample of galaxies for which star formation has been quenched. We take this to be confirmation that disc-dominated galaxies have an extended duration of star formation. At a reference velocity dispersion of 200 km s−1, we estimate an increase in half-mass formation time from ∼0.5 Gyr to ∼1.2 Gyr from low- to high-λeoRe galaxies. Slow rotators do not appear to fit these trends. Their residual α-enhancement is indistinguishable from other galaxies with λeoRe⪅0.4⁠, despite being both larger and more massive. This result shows that galaxies with λeoRe⪅0.4 experience a similar range of star formation histories, despite their different physical structure and angular momentum.

The SAMI Galaxy Survey: The Internal Orbital Structure and Mass Distribution of Passive Galaxies from Triaxial Orbit-superposition Schwarzschild Models

The Astrophysical Journal American Astronomical Society 930:2 (2022) 153

Authors:

Giulia Santucci, Sarah Brough, Jesse van de Sande, Richard M McDermid, Glenn van de Ven, Ling Zhu, Francesco D’Eugenio, Joss Bland-Hawthorn, Stefania Barsanti, Julia J Bryant, Scott M Croom, Roger L Davies, Andrew W Green, Jon S Lawrence, Nuria PF Lorente, Matt S Owers, Adriano Poci, Samuel N Richards, Sabine Thater, Sukyoung Yi

Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport.

Physical review letters 128:20 (2022) 201302

Authors:

Sebastian von Hausegger, Bruno Lévy, Roya Mohayaee

Abstract:

Optimal transport theory has recently re-emerged as a vastly resourceful field of mathematics with elegant applications across physics and computer science. Harnessing methods from geometry processing, we report on the efficient implementation for a specific problem in cosmology-the reconstruction of the linear density field from low redshifts, in particular the recovery of the baryonic acoustic oscillation (BAO) scale. We demonstrate our algorithm's accuracy by retrieving the BAO scale in noiseless cosmological simulations that are dedicated to cancel cosmic variance; we find uncertainties to be reduced by a factor of 4.3 compared with performing no reconstruction, and a factor of 3.1 compared with standard reconstruction.

Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1175-1198

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Caroline Foster, Benne W Holwerda, Matt Jarvis, Steven Phillipps, Malgorzata Siudek, Jessica E Thorne, Rogier A Windhorst, Christian Wolf

Abstract:

We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 < z < 1, and stellar mass log10(M∗/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the profit code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼ 60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼ 30 per cent at z = 0.0 (representing ∼ 33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe's timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth.

On the viability of determining galaxy properties from observations I: Star formation rates and kinematics

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3906-3924

Authors:

Kearn Grisdale, Laurence Hogan, Dimitra Rigopoulou, Niranjan Thatte, Miguel Pereira-Santaella, Julien Devriendt, Adrianne Slyz, Ismael García-Bernete, Yohan Dubois, Sukyoung K Yi, Katarina Kraljic

Abstract:

We explore how observations relate to the physical properties of the emitting galaxies by post-processing a pair of merging z ∼ 2 galaxies from the cosmological, hydrodynamical simulation NEWHORIZON, using LCARS (Light from Cloudy Added to RAMSES) to encode the physical properties of the simulated galaxy into H α emission line. By carrying out mock observations and analysis on these data cubes, we ascertain which physical properties of the galaxy will be recoverable with the HARMONI spectrograph on the European Extremely Large Telescope (ELT). We are able to estimate the galaxy’s star formation rate and dynamical mass to a reasonable degree of accuracy, with values within a factor of 1.81 and 1.38 of the true value. The kinematic structure of the galaxy is also recovered in mock observations. Furthermore, we are able to recover radial profiles of the velocity dispersion and are therefore able to calculate how the dynamical ratio varies as a function of distance from the galaxy centre. Finally, we show that when calculated on galaxy scales the dynamical ratio does not always provide a reliable measure of a galaxy’s stability against gravity or act as an indicator of a minor merger.