Constraining particle acceleration in Sgr A⋆ with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations
Astronomy & Astrophysics EDP Sciences 654 (2021) a22
Measuring the baryonic Tully-Fisher relation below the detection threshold
Monthly Notices of the Royal Astronomical Society Oxford University Press 508:2 (2021) 1897-1907
Abstract:
We present a novel 2D flux density model for observed H i emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes H i lines described with either Gaussian or busy function profiles, and H i data cubes with a range of noise and survey areas similar to the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. With prior knowledge of redshifts, stellar masses, and inclinations of spiral galaxies, we find that our model can reconstruct the input baryonic Tully-Fisher parameters (slope and zero-point) most accurately in a relatively broad redshift range from the local Universe to z = 0.3 for all the considered levels of noise and survey areas and up to z = 0.55 for a nominal noise of 90 μJy/channel over 5 deg2. Our model can also determine the MHI - M∗ relation for spiral galaxies beyond the local Universe and account for the detailed shape of the H I emission line, which is crucial for understanding the dynamics of spiral galaxies. Thus, we have developed a Bayesian stacking technique for measuring the baryonic Tully-Fisher relation for galaxies at low stellar and/or H I masses and/or those at high redshift, where the direct detection of H I requires prohibitive exposure times.Catalogues of voids as antihalos in the local Universe
(2021)
Abstract:
A recently-proposed algorithm identifies voids in simulations as the regions associated with halos when the initial overdensity field is negated. We apply this method to the real Universe by running a suite of constrained simulations of the 2M++ volume with initial conditions inferred by the BORG algorithm, along with the corresponding inverted set. Our 101 inverted and uninverted simulations, spanning the BORG posterior, each identify ~150,000 "voids as antihalos" with mass exceeding $4.36\times10^{11} \: \mathrm{M_\odot}$ (100 particles) at $z=0$ in a full-sky sphere of radius 155 Mpc/h around the Milky Way. We calculate the size function, volume filling fraction, ellipticity, central and average density, specific angular momentum, clustering and stacked density profile of the voids, and cross-correlate them with those produced by VIDE on the same simulations. We make our antihalo and VIDE catalogues publicly available.MIGHTEE-H I: the baryonic Tully–Fisher relation over the last billion years
Monthly Notices of the Royal Astronomical Society Oxford University Press 508:1 (2021) 1195-1205