Deep Extragalactic VIsible Legacy Survey (DEVILS): identification of AGN through SED fitting and the evolution of the bolometric AGN luminosity function

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:4 (2021) 4940-4961

Authors:

Jessica E Thorne, Aaron SG Robotham, Luke JM Davies, Sabine Bellstedt, Michael JI Brown, Scott M Croom, Ivan Delvecchio, Brent Groves, Matt J Jarvis, Stanislav S Shabala, Nick Seymour, Imogen H Whittam, Matias Bravo, Robin HW Cook, Simon P Driver, Benne Holwerda, Steven Phillipps, Malgorzata Siudek

Abstract:

Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy’s spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code PROSPECT with an incorporated AGN component, we fit the far-ultraviolet to far-infrared SEDs of ∼494 000 galaxies in the D10-COSMOS field and ∼230 000 galaxies from the GAMA survey. By combining an AGN component with a flexible star formation and metallicity implementation, we obtain estimates for the AGN luminosities, stellar masses, star formation histories, and metallicity histories for each of our galaxies. We find that PROSPECT can identify AGN components in 91 per cent of galaxies pre-selected as containing AGN through narrow-emission line ratios and the presence of broad lines. Our PROSPECT-derived AGN luminosities show close agreement with luminosities derived for X-ray selected AGN using both the X-ray flux and previous SED fitting results. We show that incorporating the flexibility of an AGN component when fitting the SEDs of galaxies with no AGN has no significant impact on the derived galaxy properties. However, in order to obtain accurate estimates of the stellar properties of AGN host galaxies, it is crucial to include an AGN component in the SED fitting process. We use our derived AGN luminosities to map the evolution of the AGN luminosity function for 0 < z < 2 and find good agreement with previous measurements and predictions from theoretical models.

Deep Extragalactic VIsible Legacy Survey (DEVILS): Identification of AGN through SED Fitting and the Evolution of the Bolometric AGN Luminosity Function

ArXiv 2112.06366 (2021)

Authors:

Jessica E Thorne, Aaron SG Robotham, Luke JM Davies, Sabine Bellstedt, Michael JI Brown, Scott M Croom, Ivan Delvecchio, Brent Groves, Matt J Jarvis, Stanislav S Shabala, Nick Seymour, Imogen H Whittam, Matias Bravo, Robin HW Cook, Simon P Driver, Benne Holwerda, Steven Phillipps, Malgorzata Siudek

EDGE: What shapes the relationship between HI and stellar observables in faint dwarf galaxies?

(2021)

Authors:

Martin P Rey, Andrew Pontzen, Oscar Agertz, Matthew DA Orkney, Justin I Read, Amélie Saintonge, Stacy Y Kim, Payel Das

Rotation Curves in z ∼ 1–2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods

The Astrophysical Journal American Astronomical Society 922:2 (2021) 143

Authors:

SH Price, TT Shimizu, R Genzel, H Übler, NM Förster Schreiber, LJ Tacconi, RI Davies, RT Coogan, D Lutz, S Wuyts, E Wisnioski, A Nestor, A Sternberg, A Burkert, R Bender, A Contursi, RL Davies, R Herrera-Camus, M-J Lee, T Naab, R Neri, A Renzini, R Saglia, A Schruba, K Schuster

The SAMI Galaxy Survey: trends in [α/Fe] as a function of morphology and environment

Monthly Notices of the Royal Astronomical Society Oxford University Press 510:1 (2021) 1541-1556

Authors:

Peter J Watson, Roger L Davies, Sarah Brough, Scott M Croom, Francesco D'Eugenio, Karl Glazebrook, Brent Groves, Angel R Lopez-Sanchez, Jesse van de Sande, Nicholas Scott, Sam P Vaughan, Jakob Walcher, Joss Bland-Hawthorn, Julia J Bryant, Michael Goodwin, Jon S Lawrence, Nuria PF Lorente, Matt S Owers, Samuel Richards

Abstract:

We present a new set of index-based measurements of [α/Fe] for a sample of 2093 galaxies in the SAMI Galaxy Survey. Following earlier work, we fit a global relation between [α/Fe] and the galaxy velocity dispersion σ for red sequence galaxies, [α/Fe]=(0.378±0.009)log10(σ/100)+(0.155±0.003)⁠. We observe a correlation between the residuals and the local environmental surface density, whereas no such relation exists for blue cloud galaxies. In the full sample, we find that elliptical galaxies in high-density environments are α-enhanced by up to 0.057 ± 0.014 dex at velocity dispersions σ < 100 km s−1, compared with those in low-density environments. This α-enhancement is morphology-dependent, with the offset decreasing along the Hubble sequence towards spirals, which have an offset of 0.019 ± 0.014 dex. At low velocity dispersion and controlling for morphology, we estimate that star formation in high-density environments is truncated ∼1 Gyr earlier than in low-density environments. For elliptical galaxies only, we find support for a parabolic relationship between [α/Fe] and σ, with an environmental α-enhancement of at least 0.03 dex. This suggests strong contributions from both environment and mass-based quenching mechanisms. However, there is no evidence for this behaviour in later morphological types.