New Methods for Identifying Lyman Continuum Leakers and Reionization-Epoch Analogues

(2020)

Authors:

Harley Katz, Dominika Ďurovčíková, Taysun Kimm, Joki Rosdahl, Jeremy Blaizot, Martin G Haehnelt, Julien Devriendt, Adrianne Slyz, Richard Ellis, Nicolas Laporte

A Closed-Cycle Miniature Dilution Refrigerator for a Fast-Cooldown 100 mK Detector Wafer Test Cryostat

JOURNAL OF LOW TEMPERATURE PHYSICS 199:3-4 (2020) 771-779

Authors:

S Azzoni, Aj May, St Chase, G Coppi, Lc Kenny, Sj Melhuish, L Piccirillo, A Suzuki, J Wenninger

Abstract:

© 2020, The Author(s). The forthcoming generation of cosmic microwave background polarization observatories is developing large format detector arrays which will operate at 100 mK. Given the volume of detector wafers that will be required, fast-cooldown 100 mK test cryostats are increasingly needed. A miniature dilution refrigerator (MDR) has been developed for this purpose and is reported. The MDR is precooled by a double-stage 3He –4He Chase Research Cryogenics sorption refrigerator. The test cryostat based on this MDR will enable fast cooldown to 100 mK to support rapid feedback testing of detector wafers fabricated for the Simons Observatory. The MDR has been designed to provide a 100 mK stage to be retrocompatible with existing CRC10 sorption coolers, reducing the base temperature from 250 mK for the new generation of detectors. Other 250 mK cryostats can be retrofitted in the same way. This configuration will meet the cryogenic requirements for single-wafer testing, providing 5–10 μ W of cooling power at 100 mk for over 8 h. The system operates in a closed cycle, thereby avoiding external gas connections and cold o-rings. No moving parts are required, with the system operated entirely by heaters.

QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB

Journal of Low Temperature Physics Springer Science and Business Media LLC (2020)

Authors:

M Piat, B Bélier, L Bergé, N Bleurvacq, C Chapron, S Dheilly, L Dumoulin, M González, L Grandsire, J-Ch Hamilton, S Henrot-Versillé, Dt Hoang, S Marnieros, W Marty, J Aumont, S Azzoni, S Banfi, J Bonaparte, J Bonis, A Bottani, E Bunn, D Burke, A Buzzelli, F Cavaliere, P Chanial

A precise benchmark for cluster scaling relations: Fundamental Plane, Mass Plane, and IMF in the Coma cluster from dynamical models

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:4 (2020) 5619-5635

Authors:

Shravan Shetty, Michele Cappellari, Richard M McDermid, Davor Krajnovic, PT de Zeeuw, Roger L Davies, Chiaki Kobayashi

Abstract:

We study a sample of 148 early-type galaxies in the Coma cluster using SDSS photometry and spectra, and calibrate our results using detailed dynamical models for a subset of these galaxies, to create a precise benchmark for dynamical scaling relations in high-density environments. For these galaxies, we successfully measured global galaxy properties, modelled stellar populations, and created dynamical models, and support the results using detailed dynamical models of 16 galaxies, including the two most massive cluster galaxies, using data taken with the SAURON IFU. By design, the study provides minimal scatter in derived scaling relations due to the small uncertainty in the relative distances of galaxies compared to the cluster distance. Our results demonstrate low (≤55 per cent for 90th percentile) dark matter fractions in the inner 1Re of galaxies. Owing to the study design, we produce the tightest, to our knowledge, IMF–σe relation of galaxies, with a slope consistent with that seen in local galaxies. Leveraging our dynamical models, we transform the classical Fundamental Plane of the galaxies to the Mass Plane. We find that the coefficients of the Mass Plane are close to predictions from the virial theorem, and have significantly lower scatter compared to the Fundamental Plane. We show that Coma galaxies occupy similar locations in the (M*–Re) and (M*−σe) relations as local field galaxies but are older. This, and the fact we find only three slow rotators in the cluster, is consistent with the scenario of hierarchical galaxy formation and expectations of the kinematic morphology–density relation.

A flexible method for estimating luminosity functions via kernel density estimation

Astrophysical Journal Supplement American Astronomical Society 248:1 (2020)

Authors:

Zunli Yuan, Matt J Jarvis, Jiancheng Wang

Abstract:

We propose a flexible method for estimating luminosity functions (LFs) based on kernel density estimation (KDE), the most popular nonparametric density estimation approach developed in modern statistics, to overcome issues surrounding the binning of LFs. One challenge in applying KDE to LFs is how to treat the boundary bias problem, as astronomical surveys usually obtain truncated samples predominantly due to the flux-density limits of surveys. We use two solutions, the transformation KDE method ( ) and the transformation–reflection KDE method ( ) to reduce the boundary bias. We develop a new likelihood cross-validation criterion for selecting optimal bandwidths, based on which the posterior probability distribution of the bandwidth and transformation parameters for and are derived within a Markov Chain Monte Carlo sampling procedure. The simulation result shows that and perform better than the traditional binning method, especially in the sparse data regime around the flux limit of a survey or at the bright end of the LF. To further improve the performance of our KDE methods, we develop the transformation–reflection adaptive KDE approach ( ). Monte Carlo simulations suggest that it has good stability and reliability in performance, and is around an order of magnitude more accurate than using the binning method. By applying our adaptive KDE method to a quasar sample, we find that it achieves estimates comparable to the rigorous determination in a previous work, while making far fewer assumptions about the LF. The KDE method we develop has the advantages of both parametric and nonparametric methods.