Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko.
Science American Association for the Advancement of Science 354:6319 (2016) 1563-1566
Abstract:
Carbon dioxide is one of the most abundant species in cometary nuclei, but due to its high volatility CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area, located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80×60 m area is CO2 ice. This exposed ice was observed a short time after exiting from local winter; following the increased illumination, the CO2 ice completely disappeared over about three weeks. We estimate the mass of the sublimated CO2 ice and the depth of the surface eroded layer. The presence of CO2 ice is interpreted as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.Three‐dimensional turbulence‐resolving modeling of the Venusian cloud layer and induced gravity waves
Journal of Geophysical Research: Planets John Wiley and Sons, Ltd. 122:1 (2016) 134-149
Abstract:
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3‐D turbulence‐resolving large‐eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1‐D radiative‐convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48–53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.Isotopic enrichment of forming planetary systems from supernova pollution
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 462:4 (2016) 3979-3992
Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH4, AsH3 and PH3
Icarus Elsevier 289 (2016) 254-269
Abstract:
Jupiter's tropospheric composition is studied using high resolution spatially-resolved 5-mm observation from the CRIRES instrument at the Very Large Telescope. The high resolving power (R=96,000) allows us to spectrally resolve the line shapes of individual molecular species in Jupiter's troposphere and, by aligning the slit north-south along Jupiter's central meridian, we are able to search for any latitudinal variability. Despite the high spectral resolution, we find that there are significant degeneracies between the cloud structure and aerosol scattering properties that complicate the retrievals of tropospheric gaseous abundances and limit conclusions on any belt-zone variability. However, we do find evidence for variability between the equatorial regions of the planet and the polar regions. Arsine (AsH3) and phosphine (PH3) both show an enhancement at high latitudes, while the abundance of germane (GeH4) remains approximately constant. These observations contrast with the theoretical predictions from Wang et al. (2016) and we discuss the possible explanations for this difierence.EFFECT OF SURFACE-MANTLE WATER EXCHANGE PARAMETERIZATIONS ON EXOPLANET OCEAN DEPTHS.
The Astrophysical journal 832:1 (2016) 54