Ground-breaking exoplanet science with the ANDES spectrograph at the ELT

Experimental Astronomy Springer Nature 59:3 (2025) 29

Authors:

Enric Palle, Katia Biazzo, Emeline Bolmont, Paul Mollière, Katja Poppenhaeger, Jayne Birkby, Matteo Brogi, Gael Chauvin, Andrea Chiavassa, Jens Hoeijmakers, Emmanuel Lellouch, Christophe Lovis, Roberto Maiolino, Lisa Nortmann, Hannu Parviainen, Lorenzo Pino, Martin Turbet, Jesse Weder, Simon Albrecht, Simone Antoniucci, Susana C Barros, Andre Beaudoin, Bjorn Benneke, Isabelle Boisse, Aldo S Bonomo, Francesco Borsa, Alexis Brandeker, Wolfgang Brandner, Lars A Buchhave, Anne-Laure Cheffot, Robin Deborde, Florian Debras, Rene Doyon, Paolo Di Marcantonio, Paolo Giacobbe, Jonay I González Hernández, Ravit Helled, Laura Kreidberg, Pedro Machado, Jesus Maldonado, Alessandro Marconi, BL Canto Martins, Adriano Miceli, Christoph Mordasini, Mamadou N’Diaye, Andrzej Niedzielski, Brunella Nisini, Livia Origlia, Celine Peroux, Alexander GM Pietrow, Enrico Pinna, Emily Rauscher, Sabine Reffert, Cristina Rodríguez-López, Philippe Rousselot, Nicoletta Sanna, Nuno C Santos, Adrien Simonnin, Alejandro Suárez Mascareño, Alessio Zanutta, Maria Rosa Zapatero-Osorio, Mathias Zechmeister

AGNI: A radiative-convective model for lava planet atmospheres

Journal of Open Source Software The Open Journal 10:109 (2025) 7726-7726

Authors:

Harrison Nicholls, Raymond Pierrehumbert, Tim Lichtenberg

Escaping Helium and a Highly Muted Spectrum Suggest a Metal-enriched Atmosphere on Sub-Neptune GJ 3090 b from JWST Transit Spectroscopy

The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) l10

Authors:

Eva-Maria Ahrer, Michael Radica, Caroline Piaulet-Ghorayeb, Eshan Raul, Lindsey Wiser, Luis Welbanks, Lorena Acuña, Romain Allart, Louis-Philippe Coulombe, Amy Louca, Ryan MacDonald, Morgan Saidel, Thomas M Evans-Soma, Björn Benneke, Duncan Christie, Thomas G Beatty, Charles Cadieux, Ryan Cloutier, René Doyon, Jonathan J Fortney, Anna Gagnebin, Cyril Gapp, Hamish Innes, Heather A Knutson, Thaddeus Komacek, Joshua Krissansen-Totton, Yamila Miguel, Raymond Pierrehumbert, Pierre-Alexis Roy, Hilke E Schlichting

The Radiative Effects of Photochemical Hazes on the Atmospheric Circulation and Phase Curves of Sub-Neptunes

Astrophysical Journal 985:1 (2025)

Authors:

ME Steinrueck, V Parmentier, L Kreidberg, P Gao, EMR Kempton, M Zhang, KB Stevenson, I Malsky, MT Roman, E Rauscher, M Malik, R Lupu, T Kataria, AAA Piette, JL Bean, MC Nixon

Abstract:

Measuring the atmospheric composition of hazy sub-Neptunes like GJ 1214b through transmission spectroscopy is difficult because of the degeneracy between mean molecular weight (MMW) and haziness. It has been proposed that phase-curve observations can break this degeneracy because of the relationship between MMW and phase-curve amplitude. However, photochemical hazes can strongly affect phase-curve amplitudes as well. We present a large set of general circulation model simulations of the sub-Neptune GJ 1214b that include photochemical hazes with varying atmospheric composition, haze opacity, and haze optical properties. In our simulations, photochemical hazes cause temperature changes of up to 200 K, producing thermal inversions and cooling deeper regions. This results in increased phase-curve amplitudes and adds a considerable scatter to the phase-curve amplitude-metallicity relationship. However, we find that if the haze production rate is high enough to significantly alter the phase curve, the secondary eclipse spectrum will exhibit either emission features or strongly muted absorption features. Thus, the combination of a white-light phase curve and a secondary eclipse spectrum can successfully distinguish between a hazy, lower-MMW and a clear, high-MMW scenario.

The bolometric Bond albedo and energy balance of Uranus

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025)

Authors:

Patrick GJ Irwin, Daniel D Wenkert, Amy A Simon, Emma Dahl, Heidi B Hammel

Abstract:

<jats:title>Abstract</jats:title> <jats:p>Using a newly developed ‘holistic’ atmospheric model of the aerosol structure in Uranus’s atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 – 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A* = 0.338 ± 0.011, with a phase integral of q* = 1.36 ± 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 – 2016, we model how Uranus’s reflectivity and heat budget vary during its orbit and determine new orbital-mean average values for the bolometric Bond albedo of $\overline{A^*} = 0.349 \pm 0.016$ and for the absorbed solar flux of $\overline{P_\mathrm{in}}=0.604 \pm 0.027$ W m−2. Assuming the outgoing thermal flux to be $\overline{P_\mathrm{out}}=0.693 \pm 0.013$ W m−2, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus’s average heat flux budget of Pout/Pin = 1.15 ± 0.06, finding considerable variation with time due to Uranus’s significant orbital eccentricity of 0.046. This leads the flux budget to vary from Pout/Pin = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although Pout/Pin is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun.</jats:p>