Forward modelling low-spectral-resolution Cassini/CIRS observations of Titan

Experimental Astronomy Springer Nature 57:2 (2024) 15-15

Authors:

Lucy Wright, Nicholas A Teanby, Patrick GJ Irwin, Conor A Nixon

Abstract:

The Composite InfraRed Spectrometer (CIRS) instrument onboard the Cassini spacecraft performed 8.4 million spectral observations of Titan at resolutions between 0.5–15.5 cm-1. More than 3 million of these were acquired at a low spectral resolution (SR) (13.5–15.5 cm-1), which have excellent spatial and temporal coverage in addition to the highest spatial resolution and lowest noise per spectrum of any of the CIRS observations. Despite this, the CIRS low-SR dataset is currently underused for atmospheric composition analysis, as spectral features are often blended and subtle compared to those in higher SR observations. The vast size of the dataset also poses a challenge as an efficient forward model is required to fully exploit these observations. Here, we show that the CIRS FP3/4 nadir low-SR observations of Titan can be accurately forward modelled using a computationally efficient correlated-k method. We quantify wavenumber-dependent forward modelling errors, with mean 0.723 nW cm-2sr-1/cm-1 (FP3: 600–890 cm-1) and 0.248 nW cm-2sr-1/ cm-1 (FP4: 1240–1360 cm-1), that can be used to improve the rigour of future retrievals. Alternatively, in cases where more accuracy is required, we show observations can be forward modelled using an optimised line-by-line method, significantly reducing computation time.

Aerosol layers, clouds, spots and the colours of Uranus and Neptune

Copernicus Publications (2024)

Authors:

Patrick Irwin, Jack Dobinson, Nicholas Teanby, Leigh Fletcher, Michael Roman, Amy Simon, Michael Wong, Glenn Orton, Daniel Toledo, Santiago Perez-Hoyos

Reanalyzing Jupiter ISO/SWS Data through a More Recent Atmospheric Model

(2024)

Authors:

José Ribeiro, Pedro Machado, Santiago Pérez-Hoyos, João Dias, Patrick Irwin

Abstract:

The study of isotopic ratios in planetary atmospheres gives an insight into the formation history and evolution of these objects. The more we can constrain these ratios, the better we can understand the history and future of our solar system. To help in this endeavour, we used Infrared Space Observatory Short Wavelength Spectrometer (ISO/SWS) Jupiter observations in the 793–1500 cm−1 region together with the Nonlinear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer suite to retrieve the temperature–pressure profile and the chemical abundances for various chemical species. We also used the 1500–2499 cm−1 region to determine the cloud and aerosol structure of the upper troposphere. We obtained a best-fit simulated spectrum with

Quenching-driven equatorial depletion and limb asymmetries in hot Jupiter atmospheres: WASP-96b example

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 529:2 (2024) 1776-1801

Authors:

Maria Zamyatina, Duncan A Christie, Eric Hébrard, Nathan J Mayne, Michael Radica, Jake Taylor, Harry Baskett, Ben Moore, Craig Lils, Denis E Sergeev, Eva-Maria Ahrer, James Manners, Krisztian Kohary, Adina D Feinstein

Global Chemical Transport on Hot Jupiters: Insights from the 2D VULCAN Photochemical Model

The Astrophysical Journal American Astronomical Society 963:1 (2024) 41

Authors:

Shang-Min Tsai, Vivien Parmentier, João M Mendonça, Xianyu Tan, Russell Deitrick, Mark Hammond, Arjun B Savel, Xi Zhang, Raymond T Pierrehumbert, Edward W Schwieterman