A comprehensive picture about Jovian clouds and hazes from Juno/JIRAM infrared spectral data

(2025)

Authors:

Francesco Biagiotti, Davide Grassi, Tristan Guillot, Leigh N Fletcher, Sushil Atreya, Giuliano Liuzzi, Geronimo Villanueva, Pascal Rannou, Patrick Irwin, Giuseppe Piccioni, Alessandro Mura, Federico Tosi, Alberto Adriani, Roberto Sordini, Raffaella Noschese, Andrea Cicchetti, Giuseppe Sindoni, Christina Plainaki, Cheng Li, Scott Bolton

Abstract:

Jupiter, the largest planet in our solar system, is a vital reference point for understanding gaseous exoplanets and their atmospheres. While we know its upper tropospheric chemical composition well, the nature and structure of its clouds remain puzzling. We, therefore, rely on theoretical models and remote sensing data to address this.While traditional equilibrium chemistry condensation models (ECCM) are sensitive to input parameters, advanced models [1] offer more realistic cloud property predictions. Remote sensing data can help determine cloud properties and test theoretical predictions thanks to the application of multiple scattering atmospheric retrieval. Still, the process is highly degenerate and, therefore, computationally demanding. The predicted tropospheric layers are upper ammonia ice (∼0.7 bar) and ammonium hydrosulfide (∼2 bar) clouds [2], but their spectral detection has been limited to small, dynamically active regions (

Astronomical Searches for Heavy Hydrocarbons in Titan’s Atmosphere with IRTF/TEXES

(2025)

Authors:

Conor A Nixon, Keeyoon Sung, Peter F Bernath, Thomas K Greathouse, Nicholas A Teanby, Nicholas A Lombardo, Brendan L Steffens, Patrick GJ irwin

Abstract:

Titan is renowned for its complex atmosphere, where ongoing photochemistry leads to a rich mixture of organic molecules. Beginning with the splitting of methane by sunlight and other energetic particles, multi-carbon molecules are built up by successive addition of CxHy radicals and ions to one another. This process leads to the formation of ever-larger  molecules and eventually particulates, that sediment out on the surface. Our experimental knowledge of the molecular inventory comes from two techniques: direct sampling mass spectrometry, and remote sensing.  While the former has shown the presence of species at a very wide range of masses from 1-100+ Da, their structure and even stoichiometry is poorly known. In this respect, remote sensing spectroscopy is more robust, providing definitive detections of individual molecular types via unique patterns of IR and sub-millimeter energy transitions, however for a more limited range of species. Currently, 25 species have been definitively identified by remote sensing, ranging in size from H2 to benzene (C6H6). These include 12 hydrocarbons, with the rest a mixture of diatomics, nitriles and small oxygen compounds (H2O, CO, CO2). With direct sampling currently impossible before the Dragonfly mission returns a spacecraft to Titan in 2034, astronomers have been pushing forward with chemical identifications using a range of ground and space-based observatories. We report here on recent attempts to identify new C3 and C4 hydrocarbons in Titan’s atmosphere using the high-resolution (R~100000) TEXES spectrometer at the Infrared Telescope Facility (IRTF) – see examples in Fig. 1. Associated laboratory spectroscopy work is ongoing at the Jet Propulsion Laboratory (JPL) using a Bruker FTS spectrometer to identify the positions and intensities of the strongest gas bands, to assist with targeting the telescope searches, and interpretation of the data.  Identifications of new, heavy molecular species are urgently needed to constrain photochemical and dynamical models, and make advances in our understanding of the workings of Titan’s atmosphere, and its potential for astrobiology. Such work is also important for planning data collection and analysis from the upcoming NASA Dragonfly mission, where a sensitive mass spectrometer will assess the composition of surface materials and their relation to the atmospheric constituents, as well as Titan atmospheric data from other telescopes such as ALMA and JWST.Figure 1: Examples of currently undetected molecules in Titan's atmosphere: isomers of C4H8 and C4H10. We report on ongoing searches for these species with IRTF/TEXES.

Comparative study of the retrievals from Venera 11, 13, and 14 spectrophotometric data.

(2025)

Authors:

Shubham Kulkarni, Patrick Irwin, Colin Wilson, Nikolay Ignatiev

Abstract:

Over four decades have elapsed since the last in situ spectrophotometric observations of the Venusian atmosphere, specifically from the Venera 11 (1978) and Venera 13 and 14 (1982) missions. These missions recorded spectral data during their descent from approximately 62 km to the surface. Unfortunately, the original data were lost; however, a portion has been reconstructed by digitising the graphical outputs that were generated during the initial data processing phase of each of the three missions [1]. This reconstructed data is crucial as it remains the sole set of in situ spectrophotometric observations of Venus’s atmosphere and is likely to be so for the foreseeable future.While re-analysing the reconstructed Venera datasets, we identified several artefacts, errors and sources of noise, necessitating the implementation of some corrections and validation checks to isolate the most unaffected part of the reconstructed data. Then, using NEMESIS, a radiative transfer and retrieval tool [2], we conducted a series of retrievals to simultaneously fit the downward-going spectra at all altitudes. During this process, several parameters were retrieved. The first set of retrievals focused on the structure of the main cloud deck (MCD), which includes the cloud base altitude and abundance profiles of all four cloud modes. Previous corrections that were used to account for the effect of the unknown UV absorber did not result in good fits with the spectra shortward of 0.6 µm. Hence, we derived a new correction by retrieving the imaginary refractive index spectra of the Mode 1 particles.In the next phase, the MCD retrievals were used to update the model atmospheres for each of the missions. Then, the H2O volume mixing ratio profiles were retrieved and compared with the previous retrievals using the same data by [1] along with other remote sensing observations. The final retrieval phase concentrated on characterising particulate matter in the deep atmosphere. In [3], we outlined a methodology for retrieving a near-surface particulate layer using the reconstructed Venera 13 dataset. In this new work, we apply this methodology to encompass the Venera 11 and 14 datasets and compare the retrievals from the three datasets.This research thus provides a comprehensive overview of three distinct retrievals: 1) main cloud deck, 2) H2O, and 3) near-surface particulates using the reconstructed spectrophotometric data of Venera 11, 13, and 14.References: [1] Ignatiev, N. I., Moroz, V. I., Moshkin, B. E., Ekonomov, A. P., Gnedykh, V. I., Grigor’ev, A. V., and Khatuntsev, I. V. Cosmic Research 35(1), 1–14 (1997).[2] Irwin, P. G., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J., Tsang, C. C., Wilson, C. F., Calcutt, S. B., Nixon, C. A., and Parrish, P. D. Journal of Quantitative Spectroscopy and Radiative Transfer 109(6), 1136–1150 (2008).[3] Kulkarni, S. V., Irwin, P. G. J., Wilson, C. F., & Ignatiev, N. I. Journal of Geophysical Research: Planets, 130, e2024JE008728, (2025).

Deconvolution and Data Analysis Tools Applied to GEMINI/NIFS Archival Data Enables Further Constrains on H2S Abundance in Neptunes Atmosphere

(2025)

Authors:

Jack Dobinson, Patrick Irwin, Joseph Penn

Abstract:

We present a re-analysis of archival data-cubes of Neptune obtained with the GEMINI Near-Infrared Integral Field Spectrometer (NIFS), aiming to refine constraints on the abundance of hydrogen sulphide (H₂S) in Neptune's atmosphere. To enhance spatial and spectral fidelity, we employ a modified CLEAN algorithm that effectively deconvolves the data while conserving flux. To mitigate observational and instrumental artifacts, we utilize Singular Spectrum Analysis (SSA) on single-wavelength images and apply Principal Component Analysis (PCA) across the full data-cube to suppress both random and systematic noise. Spectral retrievals are conducted using ArchNemesis, an optimal estimation inverse modeling tool. We retrieve vertical profiles at individual locations, and use Minnaert-corrected reflectivity functions across latitude bands to investigate latitudinal variability. Using the deconvolution and data analysis techniques, we are able to extract more scientific utility from legacy datasets and describe a template that can be repeated for similar datasets.

Investigating the Vertical Variability of Titan’s 14N/15N in HCN

(2025)

Authors:

Alexander Thelen, Katherine de Kleer, Nicholas Teanby, Amy Hofmann, Martin Cordiner, Conor Nixon, Jonathon Nosowitz, Patrick Irwin

Abstract:

Titan’s substantial atmosphere is primarily composed of molecular nitrogen (N2) and methane (CH4), which are dissociated by solar UV photons and subsequently generate a vast chemical network of trace gases. The composition of Titan’s atmosphere is markedly different than that of Saturn, including both the complex molecular inventory and the hitherto measured isotopic ratios – including that of nitrogen (14N/15N). Atmospheric and interior evolution models (e.g., Mandt et al., 2014) indicate that the atmospheres of Saturn and Titan did not form in the same manner or from the same constituents, and that Titan’s atmospheric N2 may have originated from its interior as NH3. The evolution of 14N/15N in Titan’s atmosphere over time does not result in a value comparable to that measured on Saturn and instead is closer to cometary values; this indicates that the origin of Titan’s atmosphere appears to be from protosolar planetesimals enriched in ammonia and not from the sub-Saturnian nebula. However, selective isotopic fractionation of molecular species in Titan’s atmosphere complicates this picture, as the isotopic ratios may vary as a function of altitude (Figure 1). To further constrain the evolution of Titan’s atmosphere – and indeed, its origin – isotopic ratios must be measured throughout its atmosphere, instead of being interpreted from bulk values likely only representative of the stratosphere.While the measurement of Titan’s 14N/15N in N2 (167.7; Niemann et al. 2010) places it firmly below the lower limit derived for Saturn (~350; Fletcher et al., 2014), Titan’s atmospheric nitriles (e.g., HCN, HC3N, CH3CN) are further enriched in 15N, resulting in ratios closer to 70 (Molter et al., 2016; Cordiner et al., 2018; Nosowitz et al., 2025). The variation in nitrogen isotopic ratios between the nitriles and N2 is thought to be the result of higher photolytic efficiency of 15N14N compared to N2 in the upper atmosphere (~900 km), resulting in increased 15N incorporated into nitrogen-bearing species (Liang et al., 2007; Dobrijevic & Loison, 2018; Vuitton et al., 2019). As these species are advected to lower altitudes, the nitrogen isotope ratio may vary vertically (Figure 1, red and black profiles), but previous measurements have only presented bulk atmospheric isotope ratios primarily representing Titan’s stratosphere (Figure 1, blue lines).Recent observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have allowed for the derivation of vertical abundance profiles of Titan’s trace atmospheric species and measurements of N, D, and O-bearing isotopologues (Molter et al., 2016; Serigano et al., 2016; Cordiner et al., 2018; Thelen et al., 2019; Nosowitz et al., 2025). However, vertical isotopic ratio profiles have yet to be derived. Here, we utilize observations acquired with ALMA in July 2022 containing high sensitivity measurements of the HC15N J=4–3 transition at 344.2 GHz (~ 0.87 mm) to investigate vertical variations in the 14N/15N of Titan’s HCN. We compare the results of the vertical 14N/15N profile to those predicted by photochemical models to determine the impact of the isotopic-selective photodissociation of nitrogen-bearing molecular species in Titan’s atmosphere, and the impact of the Saturnian and space environments that vary between model implementations.Figure 1. 14N/15N profile for HCN predicted by photochemical models from Vuitton et al. (2019; black line) and Dobrijevic & Loison (2018; red line). Blue colored bars in the lower atmosphere represent previous HCN nitrogen isotope ratios from Cassini, Herschel, and ground-based (sub)millimeter observations (see Molter et al., 2016, and references therein). Measurements are offset vertically for clarity, and all refer to HC14N/HC15N measurements for the bulk stratosphere.References:Cordiner et al., 2018, The Astrophysical Journal Letters, 859, L15.Dobrijevic & Loison, 2018, Icarus, 307, 371.Fletcher et al., 2014, Icarus, 238, 170.Liang et al., 2007, The Astrophysical Journal Letters, 644, L115.Mandt et al. 2014, The Astrophysical Journal Letters, 788, L24.Molter et al., 2016, The Astronomical Journal, 152, 42.Niemann et al., 2010, Journal of Geophysical Research, 115, E12006.Nosowitz et al., 2025, The Planetary Science Journal, 6, 107.Serigano et al., 2016, The Astrophysical Journal Letters, 821, L8.Thelen et al., 2019, The Astronomical Journal, 157, 219.Vuitton et al., 2019, Icarus, 324, 120.