Horizontal and vertical exoplanet thermal structure from a JWST spectroscopic eclipse map

Nature Astronomy Springer Nature (2025) 1-12

Authors:

Ryan C Challener, Megan Weiner Mansfield, Patricio E Cubillos, Anjali AA Piette, Louis-Philippe Coulombe, Hayley Beltz, Jasmina Blecic, Emily Rauscher, Jacob L Bean, Björn Benneke, Eliza M-R Kempton, Joseph Harrington, Thaddeus D Komacek, Vivien Parmentier, SL Casewell, Nicolas Iro, Luigi Mancini, Matthew C Nixon, Michael Radica, Maria E Steinrueck, Luis Welbanks, Natalie M Batalha, Claudio Caceres, Ian JM Crossfield, Nicolas Crouzet, Jean-Michel Désert, Karan Molaverdikhani, Nikolay K Nikolov, Enric Palle, Benjamin V Rackham, Everett Schlawin, David K Sing, Kevin B Stevenson, Xianyu Tan, Jake D Turner, Xi Zhang

Abstract:

Highly irradiated giant exoplanets known ‘ultrahot Jupiters’ are anticipated to exhibit large variations of atmospheric temperature and chemistry as a function of longitude, latitude and altitude. Previous observations have hinted at these variations, but the existing data have been fundamentally restricted to probing hemisphere-integrated spectra, thereby providing only coarse information on atmospheric gradients. Here we present a spectroscopic eclipse map of an extrasolar planet, resolving the atmosphere in multiple dimensions simultaneously. We analyse a secondary eclipse of the ultrahot Jupiter WASP-18b observed with the Near Infrared Imager and Slitless Spectrograph instrument on the JWST. The mapping reveals weaker longitudinal temperature gradients than were predicted by theoretical models, indicating the importance of hydrogen dissociation and/or nightside clouds in shaping global thermal emission. In addition, we identify two thermally distinct regions of the planet’s atmosphere: a ‘hotspot’ surrounding the substellar point and a ‘ring’ near the dayside limbs. The hotspot region shows a strongly inverted thermal structure due to the presence of optical absorbers and a water abundance marginally lower than the hemispheric average, in accordance with theoretical predictions. The ring region shows colder temperatures and poorly constrained chemical abundances. Similar future analyses will reveal the three-dimensional thermal, chemical and dynamical properties of a broad range of exoplanet atmospheres.

Possible Evidence for the Presence of Volatiles on the Warm Super-Earth TOI-270 b

The Astronomical Journal American Astronomical Society 170:4 (2025) 226

Authors:

Louis-Philippe Coulombe, Björn Benneke, Joshua Krissansen-Totton, Alexandrine L’Heureux, Caroline Piaulet-Ghorayeb, Michael Radica, Pierre-Alexis Roy, Eva-Maria Ahrer, Charles Cadieux, Yamila Miguel, Hilke E Schlichting, Elisa Delgado-Mena, Christopher Monaghan, Hanna Adamski, Eshan Raul, Ryan Cloutier, Thaddeus D Komacek, Jake Taylor, Cyril Gapp, Romain Allart, François Bouchy, Bruno L Canto Martins, Neil J Cook, René Doyon

Abstract:

The search for atmospheres on rocky exoplanets is a crucial step in understanding the processes driving atmosphere formation, retention, and loss. Past studies have revealed the existence of planets interior to the radius valley with densities lower than would be expected for pure-rock compositions, indicative of the presence of large volatile inventories, which could facilitate atmosphere retention. Here, we present an analysis of the JWST/NIRSpec G395H transmission spectrum of the warm ( Teq, AB=0=569 K) super-Earth TOI-270 b (Rp = 1.306 R⊕), captured alongside the transit of TOI-270 d. The JWST white light-curve transit depth updates TOI-270 b’s density to ρp = 3.7 ± 0.5 g cm−3, inconsistent at 4.4σ with an Earth-like composition. Instead, the planet is best explained by a nonzero, percent-level water mass fraction, possibly residing on the surface or stored within the interior. The JWST transmission spectrum shows possible spectroscopic evidence for the presence of this water as part of an atmosphere on TOI-270 b, favoring an H2O-rich steam atmosphere model over a flat spectrum ( lnB=0.3–3.2 , inconclusive to moderate), with the exact significance depending on whether an offset parameter between the NIRSpec detectors is included. We leverage the transit of the twice-larger TOI-270 d crossing the stellar disk almost simultaneously to rule out the alternative hypothesis that the transit light source effect could have caused the water feature in TOI-270 b’s observed transmission spectrum. Planetary evolution modeling furthermore shows that TOI-270 b could sustain a significant atmosphere on gigayear timescales, despite its high stellar irradiation, if it formed with a large initial volatile inventory.

A carbon-rich atmosphere on a windy pulsar planet

(2025)

Authors:

Michael Zhang, Maya Beleznay, Timothy D Brandt, Roger W Romani, Peter Gao, Hayley Beltz, Matthew Bailes, Matthew C Nixon, Jacob L Bean, Thaddeus D Komacek, Brandon P Coy, Guangwei Fu, Rafael Luque, Daniel J Reardon, Emma Carli, Ryan M Shannon, Jonathan J Fortney, Anjali AA Piette, M Coleman Miller, Jean-Michel Desert

Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission

The Astrophysical Journal American Astronomical Society 990:2 (2025) 106

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby

Abstract:

High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.

Machine learning spectral clustering techniques: Application to Jovian clouds from Juno/JIRAM and JWST/NIRSpec

Astronomy & Astrophysics EDP Sciences 701 (2025) a247

Authors:

F Biagiotti, LN Fletcher, D Grassi, MT Roman, G Piccioni, A Mura, I de Pater, T Fouchet, MH Wong, R Hueso, O King, H Melin, J Harkett, S Toogood, PGJ Irwin, F Tosi, A Adriani, G Sindoni, C Plainaki, R Sordini, R Noschese, A Cicchetti, G Orton, P Rodriguez-Ovalle, GL Bjoraker, S Levin, C Li, S Bolton

Abstract:

We present a new method, based on a joint application of a principal component analysis (PCA) and Gaussian mixture models (GMM), to automatically find similar groups of spectra in a collection. We applied the method (condensed in the public code chopper.py ) to archival Jupiter spectral data in the 2–5 µm range collected by NASA Juno/JIRAM in its first perijove passage (August 2016) and to mosaics of the great red spot (GRS) acquired by JWST/NIRSpec (July 2022). Using JIRAM data analyzed in previous work, we show that using a PCA+GMM clustering can increase the efficiency of the retrieval stage without any loss of accuracy in terms of the retrieved parameters. We show that a PCA+GMM approach is able to automatically identify spectra of known regions of interest (e.g., belts, zones, GRS) belonging to different clusters. The application of the method to the NIRSpec data leads to detection of substructures inside the GRS, which appears to be composed of an outer halo characterized by low reflectivity and an inner brighter main oval. By applying these techniques to JIRAM data, we were able to identify the same substructure. We remark that these new structures have not been seen before at visible wavelengths. In both cases, the spectra belonging to the inner oval have solar and thermal signals comparable to those belonging to the halo, but they present broadened 2.73 µm solar-reflected peaks. Performing forward simulations with the NEMESIS radiative transfer suite, we propose that the broadening may be caused by differences in the vertical extension of the main cloud layer. This finding is consistent with recent 3D fluid dynamics simulations.