A precise optical transmission spectrum of the inflated exoplanet WASP-52b

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 742-754

Authors:

T Louden, PJ Wheatley, Patrick Irwin, J Kirk, I Skillen

Abstract:

We have measured a precise optical transmission spectrum forWASP-52b, a highly inflated hot Jupiter with an equilibrium temperature of 1300 K. Two transits of the planet were observed spectroscopically at low resolution with the auxiliary-port camera on the William Herschel Telescope, covering a wide range of 4000-8750 Å. We use a Gaussian process approach to model the correlated noise in the multiwavelength light curves, resulting in a high precision relative transmission spectrum with errors of the order of a pressure scaleheight.We attempted to fit a variety of different representative model atmospheres to the transmission spectrum, but did not find a satisfactory match to the entire spectral range. For the majority of the covered wavelength range (4000-7750 Å), the spectrum is flat, and can be explained by an optically thick and grey cloud layer at 0.1 mbar, but this is inconsistent with a slightly deeper transit at wavelengths > 7750 Å.We were not able to find an obvious systematic source for this feature, so this opacity may be the result of an additional unknown absorber.

Moist convection and the 2010–2011 revival of Jupiter's South Equatorial Belt

Icarus Elsevier 286 (2017) 94-117

Authors:

Leigh N Fletcher, GS Orton, JH Rogers, RS Giles, AV Payne, Patrick Irwin, M Vedovato

Abstract:

The transformation of Jupiter's South Equatorial Belt (SEB) from its faded, whitened state in 2009-2010 (Fletcher et al., 2011b) to its normal brown appearance is documented via comparisons of thermal-infrared (5–20  µm) and visible-light imaging between November 2010 and November 2011. The SEB revival consisted of convective eruptions triggered over ∼100 days, potentially powered by the latent heat released by the condensation of water. The plumes rise from the water cloud base and ultimately diverge and cool in the stably-stratified upper troposphere. Thermal-IR images from the Very Large Telescope (VLT) were acquired 2 days after the SEB disturbance was first detected as a small white spot by amateur observers on November 9th 2010. Subsequent images over several months revealed the cold, putatively anticyclonic and cloudy plume tops (area 2.5 × 106 km2) surrounded by warm, cloud-free conditions at their peripheries due to subsidence. The latent heating was not directly detectable in the 5-20 µm range. The majority of the plumes erupted from a single source near 140−160∘W, coincident with the remnant cyclonic circulation of a brown barge that had formed during the fade. The warm remnant of the cyclone could still be observed in IRTF imaging 5 days before the November 9th eruption. Additional plumes erupted from the leading edge of the central disturbance immediately east of the source, which propagated slowly eastwards to encounter the Great Red Spot. The tropospheric plumes were sufficiently vigorous to excite stratospheric thermal waves over the SEB with a 20−30∘ longitudinal wavelength and 5-6 K temperature contrasts at 5 mbar, showing a direct connection between moist convection and stratospheric wave activity. The subsidence and compressional heating of dry, unsaturated air warmed the troposphere (particularly to the northwest of the central branch of the revival) and removed the aerosols that had been responsible for the fade. Dark, cloud-free lanes west of the plumes were the first to show the colour change, and elongated due to the zonal windshear to form the characteristic ‘S-shape’ of the revival complex. The aerosol-free air was redistributed and mixed throughout the SEB by the zonal flow, following a westward-moving southern branch and an eastward-moving northern branch that revived the brown colouration over ∼200 days. The transition from the cool conditions of the SEBZ during the fade to the revived SEB caused a 2–4 K rise in 500-mbar temperatures (leaving a particularly warm southern SEB) and a reduction of aerosol opacity by factors of 2–3. Newly-cleared gaps in the upper tropospheric aerosol layer appeared different in filters sensing the ∼700-mbar cloud deck and the 2–3 bar cloud deck, suggesting complex vertical structure in the downdrafts. The last stage of the revival was the re-establishment of normal convective activity northwest of the GRS in September 2011, ∼840 days after the last occurrence in June 2009. Moist convection may therefore play an important role in controlling the timescale and atmospheric variability during the SEB life cycle.

Rayleigh scattering in the transmission spectrum of HAT-P-18b

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:4 (2017) 3907-3916

Authors:

J Kirk, PJ Wheatley, T Louden, AP Doyle, I Skillen, J McCormac, Patrick Irwin, R Karjalainen

Abstract:

We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of R ≈ 400 using a nearby comparison star. We detect a blueward slope extending across our optical transmission spectrum that runs from 4750 to 9250 Å. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852 K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh-scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.

Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b

The Astronomical Journal American Astronomical Society 153:3 (2017) 138-138

Authors:

Jl Birkby, RJ de Kok, M Brogi, H Schwarz, Iag Snellen

ALMA observations of Titan’s atmospheric chemistry and seasonal variation

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 13:S332 (2017) 95-102

Authors:

MA Cordiner, JC Lai, NA Teanby, CA Nixon, MY Palmer, SB Charnley, AE Thelen, EM Molter, Z Kisiel, V Vuitton, PGJ Irwin, MJ Mumma