Saturn's emitted power

Journal of Geophysical Research: Planets 115:11 (2010)

Authors:

L Li, BJ Conrath, PJ Gierasch, RK Achterberg, CA Nixon, AA Simon-Miller, FM Flasar, D Banfield, KH Baines, RA West, AP Ingersoll, AR Vasavada, AD Del Genio, CC Porco, AA Mamoutkine, ME Segura, GL Bjoraker, GS Orton, LN Fletcher, PGJ Irwin, PL Read

Abstract:

Long-term (2004-2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 ± 0.035 W m-2 during the period of 2004-2009. The corresponding effective temperature is 96.67 ± 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by ∼2% and ∼0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (∼1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying. Copyright © 2010 by the American Geophysical Union.

Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols

Journal of Geophysical Research: Planets 115:12 (2010)

Authors:

DJ McCleese, NG Heavens, JT Schofield, WA Abdou, JL Bandfield, SB Calcutt, PGJ Irwin, DM Kass, A Kleinböhl, SR Lewis, DA Paige, PL Read, MI Richardson, JH Shirley, FW Taylor, N Teanby, RW Zurek

Abstract:

The first Martian year and a half of observations by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter has revealed new details of the thermal structure and distributions of dust and water ice in the atmosphere. The Martian atmosphere is shown in the observations by the Mars Climate Sounder to vary seasonally between two modes: a symmetrical equinoctial structure with middle atmosphere polar warming and a solstitial structure with an intense middle atmosphere polar warming overlying a deep winter polar vortex. The dust distribution, in particular, is more complex than appreciated before the advent of these high (∼5 km) vertical resolution observations, which extend from near the surface to above 80 km and yield 13 dayside and 13 nightside pole-to-pole cross sections each day. Among the new features noted is a persistent maximum in dust mass mixing ratio at 15-25 km above the surface (at least on the nightside) during northern spring and summer. The water ice distribution is very sensitive to the diurnal and seasonal variation of temperature and is a good tracer of the vertically propagating tide. Copyright 2010 by the American Geophysical Union.

Adaptive optics systems for HARMONI: a visible and near-infrared integral field spectrograph for the E-ELT

ADAPTIVE OPTICS SYSTEMS II 7736 (2010) ARTN 773633

Authors:

Thierry Fusco, Niranjan Thatte, Serge Meimon, Matthias Tecza, Fraser Clarke, Mark Swinbank

Coronagraphic capability for HARMONI at the E-ELT

GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY III 7735 (2010) ARTN 773589

Authors:

Szymon Gladysz, Niranjan A Thatte, Fraser Clarke, Mathias Tecza, Graeme S Salter

Correlations between cloud thickness and sub-cloud water abundance on Venus

GEOPHYSICAL RESEARCH LETTERS 37 (2010) ARTN L02202

Authors:

Constantine CC Tsang, Colin F Wilson, Joanna K Barstow, Patrick GJ Irwin, Fredric W Taylor, Kevin McGouldrick, Giuseppe Piccioni, Pierre Drossart, Hakan Svedhem